当前位置:语文迷>教学文档>教学设计> 《面积》教学设计

《面积》教学设计

时间:2024-04-11 13:31:42 教学设计 我要投稿

《面积》教学设计

  作为一名专为他人授业解惑的人民教师,有必要进行细致的教学设计准备工作,教学设计是对学业业绩问题的解决措施进行策划的过程。写教学设计需要注意哪些格式呢?以下是小编帮大家整理的《面积》教学设计,希望能够帮助到大家。

《面积》教学设计

《面积》教学设计1

  教学内容分析:

  圆的面积是学生认识了圆的特征、学算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的`长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半×半径

  Sπr×r

  =πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

《面积》教学设计2

  一、创设情境,学习新知。

  1、师:让大家通过网络收集我国国土面积的一些数据,在这些数据中,有的数据后面有“万”,有的“亿”,为什么要这样表示呢?今天这节课我们一起来研究这个问题。

  板书课题:国土面积大数的改写

  2、出示中国地图。(并多媒体演示中国地图)

  3、提问:我国的陆地面积约是多少平方千米吗?在学生回答的基础上,出示:960 0000平方千米。

  4、师:你还知道我国哪些省市自治区的土地面积?请说一说。多媒体出示四个数据:

  (1)黑龙江省土地面积约450000平方千米。

  (2)江苏省土地面积约是10 0000平方千米。

  (3)新疆维吾尔自治区土地面积1660000平方千米。

  (4)西藏自治区土地面积约1220xx0平方千米。请同学们在地图上找一找,看一看,比一比。

  学生活动:学生读一读、写一写、想一想并说出数据的特点。

  二、结合实际背景,体会改写单位的必要性。

  1、师:大家在读写这些数的时候,有些什么感受?

  2、再比较分析一下课前我们收集的资料上的数据的特点,如果为了记录方便,这些数据可以怎么进行改写。

  三、探究改写方法。

  1、师:你知道这些数据的计数单位是什么吗?它们是以“一”为单位,一般以“一”为单位是不写计数单位的,怎么把这些单位是“一”的数进行改写呢?2、分小组讨论,探究改写方法。3、观察这些数据的基本特点,从中发现改写的基本方法960 0000=960万45 0000=45万166 0000=166万10 0000=10万122 0000=122万100 0000 0000=100亿3 0000 0000=3亿

  学生活动:生先读出来,再改写。师:为什么同样的数据要用不同的方法表示?

  (学生独立思考,由学生说一说是怎样想的。)

  4.归纳大数改写的基本方法

  教师活动:引导学生想;万位在右起第几位?整万的数位后面有几个0?亿位在右起第几位?整亿的数位后面有几个0?学生讨论后,由学生自己概括改写方法

  (多媒体演示结论)

  结论:把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就可以了。

  把整亿的数改写成用“万”作单位的数,只要把后面的八个0去掉,加上一个亿字就可以了。

  四、比较大小。

  1、让学生思考一下,万以内的数的大小比较是怎么比较的,并在小组内交流。

  2、然后让学生用自己的方法和语言表达出来,并集体交流。

  五、试一试。

  1、读出下面各数,并按从小到大的顺序排列。在排列大小之前,先让学生说说排列的方法。

  2、将下面各数改写成以“万”为单位的数。让学生说说改写的方法,然后独立完成。

  3、将下面各数改写成以“亿”为单位的数。让学生说说改写的方法,然后独立完成。

  六、练一练。

  1、开发大西部。练习本题时,可以先请学生说一说我国西部各省市自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的'基础上再请学生改写成以“万”作单位的数。有条件的学校,还可以让学生收集一些西部地区的其他数据,以供学生间互相进行改写。

  2、海洋资源。练习时,可以让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。

  3、把下图中的点按数的大小从小到大连接起来。对于不同的数据比较,学生可以先统一写法,再比较;也可以直接进行比较,对于学生的不同方法,只要合理,教师都应给予肯定。

  七、课堂小结

  本节课你有什么收获?

  回家给父母说一说,并利用网络、报刊、杂志收集生活中的大数,练习改写。

  八、布置作业

  1、教材第9页的1、2题

  2、思维训练:伦敦20xx年人口约7188000人,改写成以“万”为单位的数该是多少?

  九、板书设计

  国土面积大数的改写

  960 0000=960万45 0000=45万166 0000=166万10 0000=10万

  122 0000=122万

  100 0000 0000=100亿3 0000 0000=3亿

《面积》教学设计3

  教学目标:

  1.通过指一指、摸一摸、比一比等活动,使学生理解面积的意义。

  2.在解决问题的过程中,使学生体验建立面积单位的必要性,初步理解面积单位的建立规则。

  3.认识常用的面积单位:平方厘米、平方分米和平方米。在活动中获得关于它们实际大小的空间观念,形成正确的表象。

  4.培养学生观察、操作、概括能力,使学生体验到数学来源于生活并服务于生活。

  教学重难、点:

  教学重点:使学生理解面积的意义,掌握常用的面积单位,建立面积单位的表象。

  教学难点:1.使学生建立面积的概念,建立面积单位的表象。

  2.在操作中体会引进统一面积单位的必要性。

  教具、学具:

  教具:多媒体课件;米尺、平方厘米、平方分米、平方米的教具。

  学具:两生一份面积相近但形状不同的长方形,大小不同的正方形、长方形、圆形、正三角形纸片若干,平方厘米、平方分米的学具。

  教学程序:

  自学要求:

  1.要求自学p73、p74的内容并思考下面问题:

  ①常用的面积单位有哪些?

  ②边长是多少的正方形面积是1平方厘米、1平方分米、1平方米?

  ③要求:把重要的语句用笔勾画出来。

  2、思考:用什么方法可以比出哪块面积小一些?为什么?

  学生经过观察、重叠、割补都无法比较,激发认知冲突,怎么办?

  (一)创设情景,初步感知。

  (1)出示一张大纸和一张小点的纸。

  师:老师这有两张纸,如果要在这两张纸的面上进行涂色比赛,看看谁先涂完谁就是冠军,你想选择哪一张纸?为什么?

  生:选小的,因为它小一点涂得快。

  师:看来同学们都认为这张纸的面小,这张纸的面大,要想很快的涂完,理所当然要选择这一张面小的。每个物体都有自己的面,有的物体的面大一些,有的物体的面小一些。

  (2)小结:今天我们一起研究有关物体表面的知识。(板书:物体表面)

  (二)充分感知,引导建构。

  (1)通过物体的表面感知面积。

  师:现在请你摸一摸数学书的表面,再摸摸课桌的'面。

  1.摸一摸:摸一摸这些物体的表面,你发现了什么?

  2.看一看:再看看黑板面,和我们课桌的面相比,怎么样?

  师:刚才通过摸、看知道物体表面有大有小

  我们就把物体表面的大小叫做它们的面积。(板书:物体表面的大小叫做它们的面积。)

  3.运用“面积”说一说:黑板的表面比课桌的表面大,现在还可以怎么说?

  (2)通过封闭图形认识面积。

  师:现在我们知道了什么是物体的面积,以前我们也学过了不少的图形,像正方形,长方形,三角形,那这些图形也有大小吗?你能看出这个正方形和长方形谁大谁小?

  (3)归纳面积的概念:物体表面的大小叫做面积;封闭图形的大小也叫做面积。谁能把这两方面概括起来,说说什么是面积?

  小结:物体表面或封闭图形的大小叫做它们的面积。(板书)

  生动手比一比,数学书和作业本谁大谁小?并说一说你是怎么比较的?

  (4)体验统一面积单位的必要性。

  1.课件出示:两个面积接近但形状不同的长方形。

  思考:用什么方法可以比出哪块面积小一些?为什么?

  学生经过观察、重叠、割补都无法比较,激发认知冲突,怎么办?

  2.汇报:选择的图形不同,拼摆的结果也不相同;圆片有缝隙,不准确;长方形长宽不同,不方便;正方形和正三角形能测量出结果,比较起来,正方形更简便。

  3.小结:比较两个图形的面积大小,要用统一的面积单位,正方形表示面积单位最合适。

  (5)认识常用的面积单位。

  1.检查自学情况。

  ①常用的面积单位有哪些?(板书:常见的面积单位:平方厘米、平方分米、平方米)

  ②拿一拿:从学具中分别拿出1平方厘米的正方形,1平方分米的正方形。(出示面积单位教具)

  ③画一画:在草稿本上画一个1平方厘米、1平方分米的正方形。你能画出1平方米吗?为什么?

  ④找一找:我们身边哪些物体的面积接近1平方厘米?1平方分米?1平方米?

  ⑤试一试:1平方米的地面上能站多少个同学?

  (三)、实践运用。

  (1)p74页做一做第1题。

  (2)p76页第2题。说一说测量邮票、课桌面、黑板和操场的面积,分别选用什么面积单位比较合适?

  (3)估计:教室的面积大约有多少平方米?

  (4)小资料:

  ①有关美国首都和我国首都北京的人均绿化面积资料,加拿大人均森林面积和中国人均森林面积的资料。

  ②广州市十年前人均绿化面积资料,和广州市十年后人均绿化资料。

  说一说,你有什么感想?

  (四)、全课小结:

  今天这节课你学到了什么?有什么收获?

  教后反思:

  整节课自始至终,力求从学生熟悉的生活情境出发,请学生摸一摸自己的课桌面,数学课本的封面,铅笔盒盖的面,黑板的面等让学生体会“物体的表面”。说一说你的发现,进而提出有关“面积”概念的问题,以激发学生学习的兴趣与动机。让学生通过观察发现当面积相差不大是我们无法用眼睛直接比较大小,很自然的让学生动手实践,拼一拼、摆一摆。第二组图形由于标准不统一也无法真正比较大小,引出了面积和面积单位。

《面积》教学设计4

  教学目标:

  1、经历探索长方形和正方形面积公式的过程,掌握长方形、正方形面积计算的方法,能够解决相关的实际问题。

  2、以单位面积为参照,估计长方形和正方形的面积,提高估测能力。

  3、在实践操作、讨论交流等活动中,积累活动经验,初步养成独立思考,勇于探索的习惯。

  教学难点:理解长方形所含面积单位的个数等于长方形的长与宽的乘积。

  教学准备:课件、1平方厘米的面积单位若干、长方形卡片、直尺

  教学过程:

  课前谈话:我们刚刚学习了面积和面积单位,你都知道了些什么?

  一、复习导入

  概括起来我们知道了两件事:什么是面积和面积单位;知道用面积单位铺满的方法可以知道物体表面或封闭图形的面积。这节课我们继续来学习有关面积的知识(板书课题:长方形的面积) 。

  二、动手操作、自主探究

  (一)提供材料,启发研究这张方形卡片的面积是多少?

  (1)估一估。考考你的眼力,估一估这张长方形卡片的`面积大约是多少?

  (2)怎样才能准确知道卡片的面积到底有多大?

  (3)就用你们刚才想到的方法看能不能求出它的面积?

  (二)展示、交流方法

  1.交流。

  (1)它的面积是多少?

  (2)谁估计得比较接近?

  (3)你用的什么测量方法?

  2.展示交流“全铺”情况。

  (1)沿长摆了几个?有这样的几行?一共是几个几?

  (2)算式怎么表示?(板书:4×3=12)这里的4表示什么?3呢?一共有多少个面积单位?

  (3)用1平方厘米的面积单位全部铺满,这是一种方法,谁和他的方法一样?

  [设计意图:通过动手操作,用1平方厘米的面积单位来测量卡片的实践活动,使学生学会选择合适的面积单位测量面积,通过铺满、数面积单位的个数,使学生建立和深化面积意识:把所有的面积单位都数上,才是卡片的面积。]

  3.展示交流“半铺”情况:沿长一行,沿宽一列。

  (1)探究方法:这是沿长摆几个,沿宽摆几个?铺满是多少个面积单位吗?

  (3)课件演示:沿长沿宽一共是多少个

  (4)这种方法不用全摆满,通过想就知道全部铺满以后有多少面积单位了。

  [设计意图:通过测量卡片的面积,使学生初步体验到全铺麻烦,到铺一部分,只摆一行一列,利用想象也能算出面积单位的总数,在操作中对直接经验进行修改。]

  4.运用半铺方法测量长方形面积。

  (1)用这个方法,比比谁能很快地求出这个长方形卡片的面积。

  ( 2 )面积是多少?(课件展示:沿长沿宽一共是多少个)

  [设计意图:通过测量卡片的面积,促学生深入思考,再次丰富学生间接测量经验,优化方法的同时提高语言表达能力。]

  (2)能想象出

  5.探究更简便的方法——间接测量方法。

  (1) “半铺”的方法比较简单,但它是不是适用于任何一个长方形面积的计算呢?

  (2)那我们今后就揣着平方厘米、平方分米,扛着平方米的面积单位到处去测量面积吧。比如足球场场地面积,想说些什么?

  (3)讨论:我们不妨把这张卡片就当作,大家开动脑筋,小组研究能不能找到简便的方法?

  (4)探究交流:为什么长20厘米就能摆20个1平方厘米的面积单位呢?

  (5)为什么宽是4厘米,就能摆这样地行呢?怎么列式?

  (6)量出长和宽还真的能知道长方形的面积呢!

  [设计意图:通过探究测量较大面积卡片的方法,引起学生自觉改进旧方法的意识,发现长方形长、宽与面积单位边长个数的关系,突破由面积单位到长度单位的转化这一理解难点。]

  6.利用多张卡片深化理解长方形的面积计算方法。

  (1)计算长方形卡片面积。它的面积是多少啊?怎么想的?(课件)看到长9厘米,就说明能摆,宽6厘米,说明,一共多少个面积单位?所以。怎样列式?

  (2)计算长方形卡片面积。比比谁能很快地算出这张卡片的面积,面积是多少?怎么列式?(板书算式。 )大家共同研究,有了这么了不起的发现!

  [设计意图:培养想象能力,内化操作活动,展现思维状态,推进学生思维发展,深化理解面积计算方法。]

  (三)归纳公式

  (1)研究到现在,你知道量出长和宽后怎样求出长方形的面积吗?

  (2)长方形的面积=长×宽(板书) 。

  (3) (指算式)看到长几厘米,就知道能摆几个面积单位,宽几厘米,就知道能摆这样的几行。

  所以长的厘米数乘宽的厘米数等于所含的平方厘米数。

  三、在解决实际问题中验证公式

  1.这种发现对所有的长方形的面积都适用吗?

  2.交流反馈:选取教室里表面是长方形的物体,先估计它的面积,再量出它的长和宽,计算出面积,看看估的和算的是不是较接近。 3.练习:应用公式解决实际问题。

  [设计意图:联系生活实际提供解决实际问题的机会巩固新知,感受数学与生活的联系以及数学的价值。]

  (四)总结研究过程,渗透数学研究的方法回顾一下咱们的研究过程:同学们经历了“解决长方形卡片面积问题—直接测量到不断改进测量方法—发现规律:间接测量方法—形成

  方法:总结求长方形面积的一般方法”的研究过程。今天我们研究出了求长方形的好方法,能解决许多的实际问题,其实利用这个方法,还可以求其他图形的面积,今后我们会继续学习。

  四、课后反思:

《面积》教学设计5

  教学目标:

  1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  教学过程:

  一、创设情境,引入新知

  1.出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的实例吗?

  2.引入:今天这节课我们就一起来研究环形面积的计算方法。

  二、合作交流,探究新知

  1.教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的`方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14102 =314(平方厘米)

  ②求出内圆的面积:3.1462 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14102-3.1462

  =3.14(102-62)

  =3.1464

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

《面积》教学设计6

  教学目标:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  教学重点:能正确计算组合图形的面积。

  教学难点:能根据各种组合图形的条件,正确选择计算方法并解答。

  教学准备: A4纸 基本图形 作业练习

  教学过程:

  一、 谈话激趣,揭示课题

  师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:

  1、 给学生发礼物

  2、 复习各个平面图形的面积公式

  (这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)

  3、 拼成自已喜欢的组合图形

  请选择两个或两个以上的图形拼成你喜欢的图形。

  4、 学生展示并说一说由哪些基本图形组成的。

  (师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)

  5、 教师总结:像这样由我们学过的一些基本图形组合而成的图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。

  二、 探索交流,解决问题

  1、 出示教材第88页的情境图

  师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。

  2、 想一想,估一估

  先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)

  (若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的`面积,那么客厅的面积大约为36平方米。

  师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?

  3、 自主探索,计算面积

  师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。

  (师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。

  (1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)

  4、展示学生的作品,并由学生说说理由。(怎样计算的?)

  5、(展示四种已计算的分法)再对前四种进行分类

  (师:

  分割法:

  添补法:

  割补法:

  (师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)

  板书:

  1、先转化成已学过的基本图形。

  2、分割后的图形是否可以计算。

  3、分割后的图形是否比较简单易算。

  师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。

  三、 理解运用,巩固练习

  师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。

  老师出两题考考大家,敢接受挑战吗?

  1、 出示练习,学生做在练习纸上。

  2、 讲评完第一题后,操作第二题。

  四、 学生畅谈收获

  通过这节课的学习,你在什么收获?

《面积》教学设计7

  一、激趣导入

  1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

  2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的`面积

  3、看到这个课题,你想知道些什么?

  学习目标:

  (1)了解什么是圆的面积;

  (2)了解与哪些因素有关;

  (3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。

  二、实践导学

  (一)认识圆的面积

  1、什么叫圆的面积。

  2、小组讨论

  3、圆的大小主要与哪些因素有关?

  (1)半径;

  (2)直径;

  (3)周长。

  (二)回忆平行四边形面积公式推导过程

  1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

  2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

  3、小组讨论

  (三)操作探究

  1、转化圆形推导公式

  (1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?

  (2)让学生拿出卡纸(2),观察卡纸(2)上的圆被等分成多少分,圆又被转化成什么图形?

  (3)教师课件展示圆被平均分成16等份后转化的图形。

  (4)观察比较,你有什么发现?

  2、引导学生观察比较,推导圆面积计算公式。

  (1)将圆通过剪拼,可以转化成已经学过的什么图形?

  (2)新的图形与原来的圆有什么联系?

  (3)试推导圆的面积公式。(课件展示)

  长方形的面积=长×宽

  圆的面积=c÷2×r=2πr÷2×r=πr2

  s=πr2

  三、练习巩固

  1、运用公式学习例1、

  学生试做,说根据,总结强调。

  2、完成基本练习(做一做)

  四、拓展提高

  1、解决“小羊吃草”问题

《面积》教学设计8

  教学内容:

  《现代小学数学》第九册第31~35页,三角形面积的计算。

  教学目标:

  一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  二、能运用三角形面积计算公式进行有关的计算。

  三、渗透对立统一的辩证思想。

  教学过程:

  一、复习引入。

  1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

  出示:

  2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

  3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

  【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

  二、新课展开。

  (一)实践活动。

  1.让学生拿出已准备好的如下一套图形。(同桌合作)

  (1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

  (2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

  (3)分组讨论:

  ①各三角形的'面积是多少?请填入表格内。

  ②三角形的面积怎样计算?

  (4)汇报、交流,初步得出三角形面积计算方法。

  【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

  2.验证。

  (1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

  数学课堂教学参谋

  (2)汇报、交流:学生有几种剪拼法,就交流几种。如:

  ①

  6×4÷2 6×(4÷2)

  =12(平方厘米) =12(平方厘米)

  ②

  6×4÷2 6÷2×4

  =12(平方厘米) =12(平方厘米)

  【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

  (二)归纳、小结。

  1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

  2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

  (三)应用。

  例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

  学生试做后,反馈、评讲。

  【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

  三、巩固练习。

  (一)基本练习。

  1.口算出每个三角形的面积。

  ①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

  2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

  这些三角形的高都是____厘米,底都是____厘米。

  这些三角形的面积都是:□×□÷2=□(平方厘米)。

  3.先量一量,标出图形的长度后,再计算各三角形的面积。

  【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

  (二)分层练习。

  a组学生:做选择题。

  ①求右图面积的算式是( )。

  a.9×4÷2 b.15×4÷2

  c.15×9÷2 d.15×4

  ②求右图面积的算式是( )。

  a.5.2×3.5÷2

  b.5.2×4.1÷2

  c.4.1×3.5 d.4.1×3.5÷2

  ③求下图面积的算式是( )。

  a.25×20 b.18×25

  c.18×20 d.18×20÷2

  b组学生:做课本第15页第

  ②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

  c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

  【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

  四、课堂小结。

  这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

  【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

  五、布置作业。(略)

  (此文获“第二届全国小学课堂教学征文大赛”一等奖)

《面积》教学设计9

  教学目标:

  1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

  2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

  3、培养学生的逻辑思维能力。

  教学重点:培养综合运用知识的能力。

  教学难点:培养综合运用知识的能力。

  教学过程:

  一、复习。

  1、口算:

  3242528292202

  267

  2、思考:

  (1)圆的周长和面积分别怎样计算?二者有何区别?

  (2)求圆的面积需要知道什么条件?

  (3)知道圆的周长能够求它的面积吗?

  二、新课。

  1、教学练习十六第3题

  小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?

  已知:c=125.6厘米s=r2

  r:125.6(23.14)3.14202

  =125.66.28=3.14400

  =20(厘米)=1256(平方厘米)

  答:这棵树干的横截面积1256平方厘米。

  3、教学环形面积。

  (1)例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

  已知:R=6厘米r=2厘米求:s=?

  3.14623.1422

  =3.1436=3.144

  =113.04(平方厘米)=12.56(平方厘米)

  113.04-12.56=100.48(平方厘米)

  第二种解法:3.14(62-22)=100.48(平方厘米)

  (2)小结:环形的面积计算公式:

  S=R2-r2或S=(R2-r2)

  (3)完成做一做:一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  三、巩固练习

  1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

  选择正确算式

  A、(18.843.142)23.14

  B、(18.843.14)23.14

  C、18.8423.14

  2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

  3、课堂小结。

  (1)这节课的学习内容是什么?

  (2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

  已知半径求面积S=r2

  已知直径求面积S=()2

  已知周长求面积S=()2

  (3)环形面积:S=(R2-r2)

  四、作业

  课本P70第4、6、7题。

  教学追记:

  本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的.面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。

《面积》教学设计10

  教学目标:

  1、结合具体实例和涂色活动,认识图形面积的含义。

  2、经历比较两个图形面积大小的过程,体验比较策略的多样性,学生在活动中懂得解决问题的方法不是的。

  3、让学生在观察、比较、操作的实践活动中发展学生的空间观念。

  教学重点:结合具体实例和涂色活动,认识图形面积的含义。

  教学难点:经历比较两个图形面积大小的过程,体验比较策略的多样性。

  教学流程:

  一、周长和面积对比中感受面积的含义。

  1、请同学们拿出课前准备的一元和一角硬币,请同学们沿着硬币的轮廓画一圈,想想画出的是什么图形呢?(圆形)请同学们来画画吧!画的时候要注意什么呢?(提示一定要沿着硬币的轮廓的边缘来画)比一比,看谁画得好!

  在这里感觉我设计的这个环节,学生缺少参与其中的热情,我这个设计还要思考,要让学生充满热情的去画,在教师的引领下,产生积极的数学思考。

  2、学生动手画

  3、如果我们画的两个圆是两只小蚂蚁的运动场,你能说说你的发现吗?(这个情境我没有在课的一开始设置。)

  A:大圆的周长长一些,小蚂蚁跑的路程多;小圆的周长短一些小蚂蚁跑的路程少些。

  B:一个圆(面积)大些,一个圆(面积)小些

  …………

  这些答案都有可能,因为学生上学期学习周长的时候,描过树叶的周长,所以学生说周长的可能性多一些,关于面积能提到我就顺势让学生涂面积,不提到,我就让学生帮助小蚂蚁铺草坪涂颜色。

  4、下面我们用彩笔涂上绿色,帮助小蚂蚁把运动场铺上草坪。

  A:涂完后,能从数学的角度去说说涂的感受吗?

  B:哪个涂得快些,哪个涂得慢些?为什么?

  A、B两个问题我到底怎么提好呢,还要结合课堂的生成,也想听听大家的'意见。问题A给学生的思考空间更广泛一些。问题B过于直白。

  (大圆面大涂得慢,小圆面小涂得快些。这里学生不一定能一下子说出面积这个词语。)

  5、教师引导学生总结:(就象刚才的两个圆形这样的)平面图形的大小叫做他们的面积

  6、我们来摸摸课桌的表面,说说你的感觉,这个桌面的大小叫做课桌的面积。

  看看,说说我们的生活中还有哪些面,你有什么感受?

  引导学生总结:桌面、课本封面及其它物体表面的大小,就是它们的面积。

  7、揭示课题:

  同学们在摸和涂色中知道了什么是面积(板课题:面积)。能否用自己的话说一说什么是面积吗?

  问题:这里我的初备是和一笑老师的的想法是相同的,先出示部分概念,这里我没想好怎么揭示这个概念,呈现这样两种形式,还想听听网友的意见。

  8、揭示概念:

  教师板书:物体表面的或平面图形的大小叫做他们的面积

  导入中,我采用的是比较简单的形式,这个设计的灵感来源于自己的曾经的教学和前几天房间里的一个老师的困惑-----学生对周长和面积的概念区分的不好。所以我在对概念的引入从周长入手。让学生在具体的操作中感受,周长是是表示长度的。而在涂面的时候,感受面积的概念是和长度的含义是不同的。学生不一定能表述的很清楚。但是在这画和涂的过程中,学生的内心已经能充分感受他们的区别。学生在涂平面图形和摸实物的过程中自主建构了面积的概念。

  这里面对于周长和面积的区别我在教学中并没有强调的很多。主要是让学生经历画和涂的对比中去感受周长和面积的概念。

  一笑的教学设计我看了。她是从生活中物体的面积导入。更直接一些。我最欣赏一笑老师的二次设计中,给文具盒和橡皮做束身衣,这个部分,充分体现让学生感受物体表面积的大小。我的设计虽然是从平面图形引入,但是这个平面图形也是从生活中的具体事物抽象出来的图形,我想对于学生来说,可能并不是完全的抽象的。

  二、比较面积大小,体验比较策略的多样性。

  1、说说教室里一组物体的面,并比较一下他们面积的大小。

  2、有些图形我们一目了然就能比较出它的大小,但是有些图形我们就不能。出示书上39页比一比

  (1)提问:猜一猜,哪个图形面积大些?

  让学生先进行直观估测,和后面的验证结合起来,培养学生的数感。

  (2)找验证策略:

  A、到底哪个结论是正确的?能不能结合学具袋里的学具想出办法来验证?

  B、个人尝试(让学生把学具袋里的学具都可以尝试一下,可以用不同的方法验证)

  C、小组同学交流,相互说一说。归纳小组的办法。(这里面的交流重在体现解决问题策略的多样性。可以相互借鉴,相互学习)

  D、小组展示验证,全班汇报,并说明理由或想法。

  至少可以呈现这样四种方法:折叠、用圆形图片摆、用小方块摆、用透明胶片的格子比较

  引导学生学会欣赏、反思和评价

  (3)小结:比较两个图形面积的大小时。可以采用不同的方法,但验证过程必须科学、准确。

  三、巩固练习

  (1)第一个层次的练习我安排了41页的1、2题。让学生及时巩固新知并渗透数格子比大小是比较图形面积大小的基本方法。其中第二题主要是培养学生的直观估测能力,发展空间知觉。

  (2)第二个层次的练习我安排了40页的画一画。这里我改了一下呈现顺序。感觉这个题目更有难度一些,接着做41页的3题。3题中的第二个图形教师要让学生充分的想办法,把两个三角行就可以合成一个小正方形。如果这个地方突破了,后面的4题就不成问题了。

  (3)第三层次的练习41页的4题。是让学生进一步巩固面积的含义,同时拓宽学生的思维。

  四、全课总结:学习了这节课,你有什么收获?你还想知道哪些关于面积的知识?

  全课的结束,我向学生抛出了一个问题,那就是你还想知道哪些关于面积的问题。(我就在想,学生会不会提出,我们学校操场的面积那么大,我们怎么能知道他是多大呢,课桌的面积的大小到底是多大呢?)

《面积》教学设计11

  设计意图:

  《纲要》指出“科学教育应密切联系幼儿的实际生活进行,利用身边的事物与现象作为科学探索的对象。”我选择这个活动源于班中遇到的一些现象:我们小朋友收集的图书有两种形状,一种是正方形的,一种是长方形的。那天请小朋友帮忙整理的时候,要求按从大到小的顺序排列,这时有两个小朋友争论开了,一个说“正方形的书大!”另一个却坚持说长方形的书大,一直争不出个所以然来。在拼图活动中,当一个图形改变,或者把它分成几份,拼成另一个图形时,幼儿就认为原来的图形和现在的不一样大了等等,针对这些现象,我发现面积守恒对于大班孩子来说还是个比较抽象的概念。

  《纲要》中指出5—6岁幼儿能够在感知大量事物的基础上,自己整理、加工已有的知识经验,发现浅显的规律,并且部分的开始理解守恒和包含的关系。但是,他们的思维特点还是以具体形象思维为主,并且幼儿的语言表达就是他们思维的体现,所以这次活动中,我将给幼儿充分的自由,请他们动手操作,同时为幼儿尽可能多的提供表达的机会,通过他们的亲自尝试,通过拼摆图形的系列活动,训练幼儿感知面积守恒的能力。

  活动目标:

  1、借助多媒体课件,通过操作拼摆图形,感受图形的组合及变化,体验图形面积的守恒。

  2、喜欢探索,在拼摆游戏中发展逻辑思维能力,体验成功的乐趣。

  活动准备:

  教具:电子白板课件

  视频转换仪

  背景音乐《安妮的仙境》、《月光》

  学具:长方形、正方形、梯形模板人手一份

  小三角形若干

  铅笔、记录表人手一份,如图:

  活动重点:充分发挥幼儿的主动操作性,通过实际操作,初步体验图形面积的守恒。

  活动难点:理解图形的面积不会受其摆放形状的变化而改变,在拼摆游戏中发展逻辑思维能力,体验成功的乐趣。

  活动过程:

  一、设置情境,激起兴趣

  师:小朋友们,喜欢玩拼图游戏吗?小猴和小兔也喜欢玩这种游戏。师:游戏开始了,他们每人从盘里拿出一个三角形,这两个三角形大小怎么样?为什么?(一样)有不同意见吗?

  师:看着差不多,怎么比大小呢?(重叠起来)

  (评析:从小动物们玩拼图游戏导入,很自然的引出拼图时用到的材料——三角形,而数学活动一向追求科学、严谨性,若教师直接说给出的三角形大小是一样的,对孩子而言缺乏科学依据,而且难以置信,为此通过重叠的方法让孩子进行操作、比较,亲身实践明白所给的三角形大小都是一样的,为下面比较图形大小做好铺垫。而在重叠的时候,教师不再单一的将一个三角形叠在另一个三角形上,而是在两个三角形上做上了标记“1”和“2”,通过正反重叠,即双向验证,以此来证明两个三角形大小是一样的,遵循了数学的科学、严谨性原理。)

  师:桌上也有一盘三角形,请小朋友任意选两个来比一比,看看大小怎么样?

  师小结:当两个图形看着差不多比不出大小的时候,重叠法真是个好方法。

  二、比较图形大小,感知图形面积的守恒

  1、师:小猴和小兔就用这些大小一样的三角形拼出了正方形、长方形和梯形,看看这三个图形之间藏着什么秘密?他们大小怎么样?

  师:有什么办法比出来吗?看看桌面上有些什么材料?(长方形、正方形、梯形的模板,还有一盘相同大小的小三角形。)

  师:请你任意选择两个图形来比一比,看看你发现了什么?

  (评析:考虑到两次操作“比较正方形和长方形”、“比较平行四边形和梯形”是在相同层面上的比较,没有递进关系,为此把两个环节缩成一个环节,四个图形缩成三个图形即正方形、长方形和梯形,同时在时间上也能更好的把握。另外,平行四边行对于大班幼儿来讲还是存在一定的难度,幼儿之间存在个体差异,不妨将老师提供的平行四边形放到延伸部分,放在班级区角让孩子操作,方便教师对幼儿进行个别指导,从而使每个孩子都有一定的提升。)

  2、幼儿操作

  (1)教师巡回指导,鼓励幼儿自由探索,尝试如何将四个三角形不重复、不覆盖的放入这两个图形中,让幼儿自己摸索掌握方法。

  (2)拼好后提醒幼儿观察自己选用的两个模板是由几个三角形拼成的。

  3、讨论:

  (1)你拼了哪两个图形,你发现了什么?(个别、师幼集体验证)

  (评析:活动中增加了一个视频转换仪。视频转换仪能较直观的表现幼儿在操作中出现的错误,教师也便于进行纠正。利用视频转换仪的演示功能,让不成功的孩子把自己的模板拿上来,集体检验后,让大家一起来帮他,最后集体总结出规律:如正方形的拼法,是三角形的长边对着正方形的边等等。最后小组成员间相互检查,纠正,让大家都获得成功,体验数学的科学、严谨。)

  (2)三个图形一样大吗?为什么?(三角形数量相等,三个图形面积大小一样,没拼好的'孩子马上调整过来)

  (评析:这里增加了一个“自我调整”的环节,考虑到孩子之间存在着个体差异,特别是一些能力弱的孩子,当教师讲解方法之后,给予这些孩子思考的空间,调整自己的构思,积累经验。同时本领大的孩子也有更多的时间和机会进行思考,发现其中的奥秘。)

  (3)师小结:小朋友用同样的四个三角形拼成了长方形,又拼成了正方形、梯形,形状变了,但大小没有变,他们是一样大的。

  三、图形组合、变化,体验图形面积守恒

  1、师:小朋友们真爱动脑筋,帮助小猴和小兔解决了难题,现在它们还想来考考我们,它们将这三个图形进行了组合,拼成了房子的。屋顶和墙面,小猴说:“小兔,我拼的房子的屋顶和墙面合在一起的面积比你的大。”小兔说:“不对、不对,我拼的才比你的大呢?”就这样,两个人又发生了争执。

  小兔1:小猴2:

  相应的问号处。

  2、幼儿交流:师:请你们来猜一猜,它们需要几个三角形才能拼成?将你们的猜测填在表格中

  师:你觉得小猴拼的房子的屋顶和墙面合在一起的面积大还是小兔的大?为什么?(幼儿大胆表达自己的想法)

  师:那么结果到底是谁大谁小呢?请你选择一个图案来拼一拼,拼的时候先把房子的屋顶和墙面的形状拼好,再把三角形拼在上面,拼好后数一数每个图案用了几个三角形?将结果填在记录表中。

  3、幼儿操作

  4、幼儿再次交流:

  师:一共用了几个三角形?你发现了什么秘密?

  5、出示记录表

  小结:虽然这些图案他们的形状不一样,但他们都是用相等数量的同种三角形拼成的,他们的面积大小是一样的。

  (评析:从三个图形中任意选两个图形组合变成了房子,先让幼儿猜测,发展孩子的逻辑思维能力,然后通过“做中学”的方法进行验证,从记录表中清晰、明了的得出结论,再一次理解图形面积的守恒。)

  四、活动延伸:将平行四边形、三角形等图形投放到区域

  师:后来小猴和小兔又拼出了造型不一样的房子,这次结果又会怎么样呢?老师将这些图形的模板放在区域中,感兴趣的孩子可以去研究一下,下次我们再来讨论。

  (评析:引入平行四边形、三角形等特殊图形再次组合拼出造型不一的房子,以此吸引孩子的眼球,将“问题”抛给孩子,鼓励孩子大胆探索,找寻奥秘。)

  活动反思:

  本次活动关注的是幼儿的自身操作,在幼儿操作中发现结果,寓知识于现象中。在第一个环节加入了一个“三角形比大小”的环节,目的就是让孩子通过操作比较,知道我们今天所用的三角形材料都是一样大的,只有操作材料相同的情况下,用4个三角形拼出的图形面积才是一样大的,教学具才能真正做到有效的为教学服务。整个活动中,考虑到了孩子的主体作用,始终把孩子放在首位,孩子们通过多次层层递进的操作与探索,发现虽然这些图形的形状各不相同,但它们都用了4个相同大小的三角形,所以它们的面积大小是一样的。

《面积》教学设计12

  一、教学目标

  【知识与技能】

  掌握圆的面积计算公式,并能利用公式正确解决简单问题。

  【过程与方法】

  通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。

  【情感、态度与价值观】

  感受数学与生活的联系,激发学习兴趣。

  二、教学重难点

  【教学重点】

  圆的面积计算公式。

  【教学难点】

  圆的面积计算公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。

  (二)讲解新知

  提出问题:之前的图形面积公式是如何推导的?

  学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。

  追问:能否将圆的图形转换成之前的图形?

  组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。

  预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;

  预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;

  预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。

  老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的.动图,让学生观察其特点。

  学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。

  进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?

  预设1:长方形的面积等于圆的面积;

  预设2:长方形的长近似等于圆周长的一半;

  预设3:长方形的宽近似等于圆的半径。

《面积》教学设计13

  学习目标

  通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  学习重点

  使学生认识圆柱侧面展开图的多样性。

  过程与方法

  教师活动

  教学过程:

  一、创设情境,引起兴趣。

  拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?

  二、自主探究,发现问题。

  研究圆柱侧面积

  1、独立操作:

  2、观察对比:观察展开的图形各部分与圆柱体有什么关系?

  3、小组交流:能用已有的知识计算它的面积吗?

  4、小组汇报。重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的`那个面有什么关系?

  长方形的面积=圆柱的侧面积即长×宽=底面周长×高,所以,

  圆柱的侧面积=底面周长×高S侧==C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  如果圆柱展开是平行四边形,是否也适用呢?

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。2、圆柱体的表面积怎样求呢?3、动画:圆柱体表面展开过程

  三、实际应用

  1、解决书上的例题

  2、填空:圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

  3、要求一个圆柱的表面积,一般需要知道哪些条件()

  4、教材第六页试一试。

  学生活动

  说说自己的猜想。

  利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

  选出一个学生已经展开的图形贴到黑板上。

  长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。

  学生动手操作,动笔验证,得出了同样适用的结论。

  学生测量,计算表面积。

  得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2

  指名板演,互相纠正。

  学生互相讨论后完成。

  课后完成。

  板书设计

  圆柱的表面积

  教学反思

  学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

《面积》教学设计14

  教学内容:九年义务教育六年制小学数学第十二册第106-107页

  教学目标:1.进一步理解常见几何体的体积计算公式及其推导过程,体会相关体积公式的内在联系,感受探索几何体体积计算方法的一般策略;

  2.在解决问题的过程中,发展学生灵活地应用相关数学知识和方法的能力;

  3.进一步感受数学与生活的密切联系,体会学习数学的重要性。

  教学重点:理解和掌握几何体的体积计算公式及其推导过程。

  教学难点:正确选用表面积和体积计算公式解决实际问题。

  设计理念:本节课引导学生回忆体积计算公式的推导过程,经历知识的整理过程,完善认知结构,感受数学思想方法的奥妙;创设一系列的问题情境,引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,让学生了解数学在现实生活中的作用,体会学习数学的重要性。

  教学步骤教师活动学生活动

  一、揭示课题

  这节课我们复习立体图形的体积计算。

  二、回顾与整理

  1.提问:你能说一说各立体图形体积的计算公式吗?

  (板书公式)

  2.请大家回忆一下各立体图形体积公式的推导过程,想一想它们之间的联系,与同学们进行交流。

  3.提问:你认为这些计算公式哪一个是最基础的?为什么?

  能不能用一个公式统一表示长方体、正方体和圆柱体的体积计算方法?你是怎样想的?口答计算公式

  回忆推导过程,

  分组讨论

  汇报交流

  三、练习与实践

  1.求下面各立体图形的体积和表面积。

  (1)棱长是6厘米的正方体

  (2)长方体的长是6分米,宽是5分米,高是1.2米

  (3)底面半径3分米、高5分米的圆柱

  (4)底面周长12.56厘米,高0.3分米

  2.学生解答后提问:

  “第一个正方体的表面积和体积相等”这句话对吗?为什么?

  你能说说表面积和体积的区别吗?(含义、计算方法、计量单位)

  学生独立解答

  判断说理

  进一步比较表面积和体积

  解题以后你还有什么体会?

  (认真审题、正确选择方法、细心计算)

  3.填一填。

  (1)小明用小正方体魔方搭一个大正方体,至少需要()个魔方。这个大正方体的.表面积是原来小正方体的()倍。

  (2)将1立方分米的大正方体切成体积是1立方厘米的小块,并将这些小块拼成一排,能摆()米长。

  A、10B、100C、1000D、1

  (3)圆锥体的底面积缩小3倍,高扩大3倍,体积()。

  A、缩小3倍B、不变C、缩小9倍D、无法确定

  (4)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米。

  A、16B、48C、32D、24

  4.解决实际问题.

  (1)一个长方体沙坑,长5米,宽1.8米。要填40厘米厚的沙,每立方米沙重1.5吨。这个沙坑大约要填沙多少吨?

  (2)学校有一个圆柱形状的储水箱,它的侧面由一块边长6.28分米的正方形铁皮围成。这个储水箱最多能储水多少升?(接缝略去不计)

  (3)一种计算机包装箱,标明的尺寸是380×266×530。它的体积是多少立方分米?做这个包装箱至少需要多少平方分米硬纸板?(用计算器计算,得数保留两位小数)

  提问:第1题求需要沙子的重量,先要求出什么?第2题呢?第3题的两个问题有什么不同?

  解决这些问题,你认为要注意什么问题?

  谈谈解题体会

  学生填空后说说想的过程。

  学生独立解答后,

  分组交流解题方法。

  四、课堂总结。

  表面积和体积有什么区别?在复习过程中,你觉得还有哪些困难?

  五、布置作业。

  P.106—107第9、11题学生独立解答,

  反馈思路及方法

《面积》教学设计15

  教学内容:九年义务教育六年制小学数学第九册70页一72页。

  教学目的:

  1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。

  2.培养学生初步的逻辑思维能力和空间观念。

  3.结合教材渗透转化思想。

  教学重点:掌握和运用平行四边形面积计算公式。

  教学难点:平行四边形面积公式的推导过程。

  课前准备:投影器、长方形框架、平行四边形纸片等。

  教学过程:

  一、课前谈话:

  师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?

  曹冲真聪明,他把不好称的大象转化成了和它一样重量的石头,结果得到了大象的重量。你们想做曹冲这样聪明的人吗?

  二、创设生活情境

  这学期一开学我们学校的清洁区进行了重新划分,(课件出示花坛图)这是要分给五一班和五二班的清洁区。两个卫生区的面积一样吗?有什么好的'判断方法吗?

  学生自由发言。

  师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)

  三、探究新知

  1、自主探索

  出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!

  学生以小组为单位开展活动,教师巡视。

  汇报、反馈:都有结果了吧,哪个小组先来汇报?

  各小组派代表发言。

  2、对比分析

  每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。

  3、归纳总结

  你们真聪明,能把没有学过的知识转化成学过的知识,现在这个长方形的面积怎样求?它的长和宽与原来平行四边形的什么有关?

  想一想,这个长方形的面积其实就是谁的面积?由此你们知道怎样求平行四边形的面积了吧?谁来说一说?

  四、巩固运用

  咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!

  1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?

  2、P82看第2题。

  3、课件出示:P83第题,这两个平行四边形的面积相等吗?为什么?

  五、小结:今天大家学得开心吗?你们都有哪些收获?

  出示一个长方形框架,这是什么形状?(再拉变形)现在变成什么了?想一想,这两个图形的面积相等吗?为什么

【《面积》教学设计】相关文章:

梯形的面积教学设计06-08

圆的面积教学设计02-27

《圆面积》教学设计11-04

组合图形的面积教学设计11-07

《圆柱的表面积》教学设计03-18

圆的面积教学设计方案12-03

《长方形面积的计算》教学设计06-30

三角形的面积教学设计03-28

《三角形的面积》教学设计优秀09-06

六年级《圆的面积》教学设计10-20