当前位置:语文迷>教学文档>说课稿> 五年级数学说课稿

五年级数学说课稿

时间:2024-10-09 13:53:25 说课稿 我要投稿

有关五年级数学说课稿集合8篇

  作为一无名无私奉献的教育工作者,常常需要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。说课稿要怎么写呢?下面是小编为大家整理的五年级数学说课稿8篇,欢迎阅读,希望大家能够喜欢。

有关五年级数学说课稿集合8篇

五年级数学说课稿 篇1

  今天我说课的课题是《小数乘小数》。它是人教版小学五年级上册第九单元第一课时的教学内容。这部分内容主要是教学小数的计算,教材一共安排了两道例题和一个练习。

  一、教材分析:

  (一)教材所处的地位

  小数乘以小数是在学生学习了小数乘以整数、整数乘以小数及整数乘法的基础上进行教学的。它既是小数除法学习的基础,也是小数四则混合运算和分数小数四则混合运算学习的基础。

  (二)教学重难点的确立

  教学要求:

  1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行估算、口算、笔算。

  2、在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想。

  3、使学生体验学习过程是一个不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。

  教学重点:

  学生自己探索获得“小数乘以小数”的计算方法。培养学生自主探索的能力,即独立获取知识的能力。

  教学难点:

  通过转化探索活动,使学生发现因数中小数位数与积中小数位数的对应关系,悟出“两个因数中的小数位数就是积中的小数的位数”。

  二、说教法、学法

  紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。

  1、以学生为主体,发展学生的自主学习能力与思维能力。

  数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现小数乘以小数的算理和算法,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先呈现房间平面图,启发学生获取信息,提出问题,列出算式说明及依据。教学计算要善于捕捉差距,关注生成。如:通过以上学生知识形成的过程与经验,紧接着出示阳台的面积是多少平方米,学生自主用已有的生活经验探索两位小数与两位小数相乘中两个因数与积的小数位数的关系。并在小组里讨论过程中学生自主生成,小数乘小数的计算法则,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。

  2、正确把握教师主导与学生主体的关系。

  本课力求在每一个环节的推进过程中都先让学生独立思考、独立探究,再让小组合作讨论探究,教师只起穿针引线的作用,给予学生应有的尊重与信任,提供其广阔的思考空间与交流机会,使其通过个体思考,小组或组际交流逐步得出自身认可的计算法则或规律,充分体现学生是课堂学习的主人。比如:教材重点组织学生探索笔算的方法,先告诉学生可以把竖式中的两个小数都看成整数来计算,再结合直观图示讨论,按整数相乘后怎样才能得到原有的数?启发学生理解,把两个因数看成整数,等于把原来两个因数分别乘以10得到整数,因数扩大100倍,积也就积也就相应扩大100倍。因此要得到原来算式的积,应用整数相乘的积反过来除以100。除此以外,学生可以通过单位换算把米化成分米得到的.积后再换算成平方米。学生可以通过对笔算结果与估计结果的比较,判断笔算

  结果是否合理,从而确认相应计算方法的正确性。在引入“3.6X2.8”时要求学生先用两种方法估算,并说明正确答案的范围,根据以上推断,让学生独立计算,为接下来笔算方法提供一种支持。

  三、说教学程序

  为充分体现以上的一些设想,本课的具体过程如下:

  1、创设情境,引出可探索的“数学问题”。

  数学来源于生活,通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到了数学与生活的密切联系,认识到计算确实是一种需要,产生急于要弄明白的求知心理,激起了探索的欲望与兴趣,为下一步的自主探究创造了良好的心理条件。如在创设情景引入的过程中,教师问:“你获取了哪些信息?”可以体现教师创造性使用教材,让学生自己提出问题,自己列式,自己解答,使枯燥知识变成善于学习的知识。

  2、对算理和算法的自主探索。

  在整个过程中,教师放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解释新问题的氛围。

  (1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,让教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。

  (2)交流各自的算法与想法。在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8X3.6的结果最大是多少,然后让学生再进行计算。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。

  3、运用规律来解决问题,让学生进一步感悟算理,获得方法。

  运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。

  4、运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。

  小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。最后还安排了一个实践题:一种西装面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估算的数,在计算)并应用本节课学习的知识计算出物品的总价。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。

  总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。

五年级数学说课稿 篇2

  一、说教材

  《找最大公因数》是北师大版小学数学五年级上册第三单元《分数》中的内容。本课时是在学生找一个数的因数基础上学习的。同时又为以后学习约分打下基础。教材中直接呈现了找出公因数的一般方法:先用想乘法算式的方法,分别找12、18的因数,再找公因数和最大公因数。在此基础上,引出公因数和最大公因数。教材采用的集合的方式呈现探索的过程。

  二、说目标

  根据教材编写特点,我确定如下教学目标:

  1、探索找两个公因数的方法,能准确地找出两个数的公因数和最大公因数。

  2、让学生经历找两个数的公因数的方法,理解公因数和最大公因数的意义。

  三、说教学重、难点

  新课标鼓励学生通过思考、讨论交流,经历探索的过程。

  因此确定教学重点为探索找两个数的公因数的方法。

  难点为用多种方法正确地找出两个数的公因数和最大公因数。

  四、说教学方法和学法

  《新课程标准》指出:有效的教学活动不能单纯地依靠模仿与记忆。自主探索与合作交流是学习数学的重要方式,而本节课学生对因数已经有了初步的认识,在教法与学法上,可以让学生在半独立的状态下进行自主学习、交流探索。而教师在交流过程中,主要是引导、组织学生归纳找最大公因数的方法,让学生在经历体验、探索中去归纳、总结找最大公因数的方法。这也是体现学生的主体地位和教师的主导作用。

  五、说教学设计

  《新课程标准》强调从学生的生活经验和已有的知识出发,让学生亲身经历自主探索、合作交流、归纳总结的过程。根据这一理念,我设计了如下教学环节:

  第一环节:

  ( 一)、复习导入,学习新知

  因为学生已经很熟练找出一个数的因数,因此,我利用学生已有的知识、经验进行导入新知。(导入这一环节准备用时3分钟)

  1、师:同学们,我们已学过找一个数的因数,如果老师现在给你一个数,你能很快找出它的因数吗?

  生回答师板出12的'因数:1、2、3、4、6、12

  2、师:你们真棒!照这样的方法,你能很快写出18的全部因数吗?

  生独立写并汇报18的因数:1、2、3、6、9、18。

  3、师:那么准,那你们看看它们的因数你发现了什么?请大家找一找,在12和18的因数中有没有相同的因数?相同的因数有几个?

  生同位交流,共同找出:1、2、3、6。

  师:像这样即是12的因数,又是18的因数,我们就说这些数是12和18的公因数。此时师板书出集合图形。

  4、师:中间这一区域有什么特征?应该填什么数?

  生独立思考后分小组讨论。

  生汇报:中间所填的数应该即是12的因数又是18的因数。

  5:师:在这些公因数里面,哪个数最大?生:6最大。

  6:师:对,6在这两个数的公因数里面是最大的,那么我们就说6是12和18的最大公因数。

  师:这就是我们这节课要学习的内容找最大公因数。

  师板书课题:找最大公因数

  (这一环节的设计,让学生探索找两个数的公因数的最大公因数的方法。并且能很快地找出来。同时这也就突破了教学重点:让学生理解公因数和最大公因数。)

  这一层次的设计我准备用时12分钟。

  (二)、尝试练习,合作探究

书45页练一练中的1、2两题:

  (1)利用因数关系找最大公因数

  师:请大家把书翻到第三45页,独立完成第1小题。

  8的因数有:1、2、4、8。

  16的因数有:1、2、4、8、16。

  8和16的公因数有:1、2、4、8。

  8和16的最大公因数是:8

  师引导学生观察:8和16之间是什么关系?与它们的最大公因数有什么关系?

  学生随着老师的问题提出来就独立的思考观察,然后在小组内自行解决。

  (让学生们自己去探索,去发现,并在小组内得到发展,对后进生来说也是一个促进。)

  生汇报:8是16的因数,所以8和16的最大公因数是8。

  然后师放手给学生,鼓励学生自己小结;如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数,并及时出一些这方面的题练习,如:4和12,28和7,54和8

  (2)利用互质数关系找最大公因数

  师:请大家独立完成第二题。

  生汇报5的因数有:1、5。

  7的因数有:1、7

  5和7的最大公因数是:1

  师同上一样引导学生独立观察5和7之间是什么关系?与他们的最大公因数有什么关系?

  分小组讨论汇报。

  生:5和7是质数,所以5和7的最大公因数是1。

  引导生小结:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么他们的公因数只有1。

  练习:4和5,11和7,8和9

  (3)、整理找最大公因数的方法

  师:今天我们学习了哪些方法找最大公因数?

  生:列举法,用因数关系找,用互质数关系找

  师:我们在做题时要观察给出的数字的特征,运用不同的方法去找出它们的最大公因数。

  (教师在讲解找最大公因数时,不仅要告诉学生具体的方法,更重要的是将这些单独的内容联系起来,给出学生统一的解题步骤,这样学生才有章可循。)

  这一环节的设计我也准备用时15分钟。

  (三)、巩固练习,体验成功

  完成书第46页的3、4、5题。可以让学生独立完成,师巡视指导。在巡视的过程中对于后进生要特别的指导点拨。

  巩固练习准备用时8分钟。

  第四环节:全课小结

  用2分种对本节课的知识进行归纳总结。

  五、说板书设计

  我本节课的板书设计力图全面而简明的将本课的内容传递给学生,便于学生理解和记忆。

  各位评委老师,我仅从教材、教法、学法、及教学过程、板书设计等几个方面对本课进行说明。这只是我预设的一种方案,但是课堂千变万化的生成效果,最终还要和学生、课堂相结合。

五年级数学说课稿 篇3

  一、说教材

  (一)教材分析:

  1、教学内容:最小公倍数第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。

  2、结合学情与新课程标准对本环节的要求,分析教材编写意图:

  五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。

  在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。

  (二)对教材的处理意见

  1、教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。所以把“原来铺墙砖”的题目改为“找两人的共同休息日”来建立概念。原因有三:首先,学生的学习内容应该是现实的、有意义的、富有挑战性的;其次,有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;再者,课堂中最有效的时间是前15钟,做好这段时间的教学,有利于提高学习效率。从而把这一比较难理解的环节放在后面。

  2、新授课中补充生活实例,引导学生从意义的理解来,解决实际问题,通过解决问题来理解意义。理由是:数学教学应密切联系学生的现实生活,使学生感到数学就在自己身边。

  3、课堂习题进行了有明确针对性与目的性的改变。(后述)

  (三)教学目标及教学重、难点

  1、教学目标

  (1)理解两个数的公倍数和最小公倍数的意义。

  (2)通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化。

  (3)渗透集合思想,培养学生的抽象概括能力。

  2、教学重点

  公倍数与最小公倍数的概念建立。理由是:《标准》中要求4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数,因此,本节课的重点应放在学生对数的概念的认识上。

  3、教学难点

  运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。理由是:《标准》中指出人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能。但小学生的生活实际问题的解决能力普遍较低,所以要达到《标准》中的要求这无疑是重点中的难点。

  二、说学法

  1、学情分析

  小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  2、学法指导

  通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。

  三、说教法

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。

  1、利用情境引入新课,通过月历探索新知。

  学生在月历上找日期,清楚形象的看到两个数的倍数关系

  2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。

  学生探索后,用自己的语言梳理新知,学生便能在环环相扣的教学进程中顺理成章的'理解概念,沟通二者之间的联系。

  3、创设问题情境,尝试应用,方法提炼。

  结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。

  4、巩固练习、不断刺激,不断巩固提升。

  四、教学具准备:

  印有月历纸、多媒体课件。

  五、具体的教学过程:

  我设计的总体理念:让学生在自主参与的基础上感悟、理解、应用、巩固。将直观演示与抽象思维相结合。我的教学流程如下:

  (一)、利用学具,导入新课(本环节为解决教学重点)

  1、学生在预先发放的月历纸上按照老师的要求,在上面找出4和6的倍数的日期。

  2、引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,从而引出公倍数与最小公倍数。

  3、把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念。

  (二)、创设情境,应用知识:(本环节为解决教学难点)

  1、出示同学排队的题目。理由是:用富有生活问题的情境,激发学习兴趣,再次打通生活与数学的屏障。

  2、合作交流解决问题,方法提炼。

  (三)、练习巩固(讲清练习的层次)

  1、学会用最基本的方法求两个数的最小公倍数。

  2、用这样的知识解决生活中的问题。

  (1)找生日。基本——拓展

  (2)铺墙砖。用数学方法来解释生活现象,隐含着求公因数与求公倍数的联系。

  (四)、课堂小结

  学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。

五年级数学说课稿 篇4

  基于对教材的认识,因此我设计本节课的教学目标如下:

  (1)在自主探索的活动中,理解计算组合图形的多种方法。

  (2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  (3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。感受计算组合图形面积的必要性,产生积极的数学学习情感。

  教学重、难点:

  针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:

  教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。

  教学难点:理解计算组合图形面积的.多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

  根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探索、合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。

  在新授部分展开过程中,根据小学数学新课程标准强调的数学与现实生活的联系,从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:

  创设情境、复习导入—— 自主探索、合作交流

  (一)创设情境、复习导入

  1.说一说已经学过哪些平面图形的面积

  2.拼一拼七巧板

  3.看一看拼出的图形像什么?有哪些图形拼成的。

  这一环节设计的目的,是让学生在说一说,拼一拼,看一看的过程中充分调动多种感官参与到学习中来 ,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关.

  由此揭示课题:组合图形面积(板书)

  (二)自主探索、合作交流

  1.学生独立与小组合作交流解决组合图形面积计算问题。

  出示例题,请学生自主独立尝试解决“这面墙的面积”这个组合图形的面积计算。在此基础上进行小组交流。在这一环节中我真正的转变们了教师的角色,给学生足够的时间和空间,先进行独立思考,因为没有独立思考为基础的小组交流是无效的,那样只能是学优生、思维敏捷孩子表演的领地,只有建立在每个孩子独立思考的基础上,每个孩子才有话说,那样的小组合作才有效。在这过程中积极主动地参与到学习中,获取更多的解题方法,让每个学生都有成功的体验.)

  2.小组汇报学习情况

  汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:

  (1) 将组合图形分割成两个一个正方形、一个三角形。

  (2) 将组合图形分割成两个梯形

  学生边汇报,教师利用多媒体演示后随即板书。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。

  3.师生总结分割法。

  接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”这种计算方法.让学生明确分割图形越简洁,解题方法越简单。

  4.新授部分的练习:练习是为了学生及时巩固新知,并能用学到的新知进行迁移。为此我设计了两个层次的练习

  a.模仿练习,以割补法为主。

  b.变式练习,渗透“添补法”。

  (三)练毕校对,及时小结。

  在教学过程中教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。通过交流多种计算方法,使学生感悟解决问题策略的多样化,并选择最优的方法。

  5 .各位评委:今天我说课的内容是关于《组合图形面积》。

  《组合图形面积》是义务教育课程标准人教版五年级上册第五单元内容,是在学生学习了长方形与正方形、平行四边形、三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

五年级数学说课稿 篇5

  各位专家评委,各位老师上午好,今天我说课的内容是综合实践活动《走进军营》的主题确立课。下面我将从活动背景、活动目标、活动重难点、活动时长、活动准备及活动过程几方面开展我的说课。

  一、活动背景

  1、小学中、高年级的学生步入少年时代,对未来充满了幻想。绝大多数学生都是独生子女,平时在家特别享受父母关爱。因此,利用他们对军人的崇拜之情,带他们走进军营,参观营地,亲身体验军人生活,感悟军人气质,对于提高学生的生活自理能力,磨练坚强的意志,有很重要的作用。

  2、今年的7.28洪水给我们带来了深刻的伤痛,前来救援的65331部队曾经就驻扎在我们操场上,也让我们的孩子近距离领略了军人的风采,对军营的生活更加好奇。

  二、活动目标

  1、了解军人紧张而有序的生活,体会人民卫士的艰辛,感受生活的安定来之不易,激发学生热爱解放军之情。

  2、体验军队严格的纪律,严谨的工作作风、优良的生活作风,以提高学生纪律意识、团队意识,培养良好的行为习惯。

  3、了解有关军事、国防的知识。

  4、使学生学有榜样,奋发向上,形成心有祖国、心有集体、心有他人的思想感情。

  5、对学生们进行爱国主义教育,培养初步的社会责任感。

  三、活动重点、难点

  1、保证学生活动过程中的人身安全。

  2、培养学生的爱国主义情感。

  3、提高学生合作探究及团体协作能力。

  四、活动时长

  8课时

  五、活动前的'准备

  1.与驻军单位沟通;

  2.准备摄像机、照相机等设备;

  3.设计采访卡和各种活动记录表;

  4、对学生进行安全教育和礼貌教育。

  六、活动流程(主题确立课)

  1、导入

  播放7.28军营抗洪视频以及军营驻扎在我校的照片,创设情境导入。7.28是真实发生在我们周围的灾难,学生感触较深,同时抗灾过程中也有很多同学接触到了我们可爱的人民子弟兵,学生谈论热情高涨,由学生观后感引导至本课主题生成。激发学生的探究热情。

  2、主题分解

  (1)以学习小组为单位进行讨论,提出自己最想知道的关于军营的问题。

  (2)对学生提出的问题进行展示,合并筛选。

  (3)对一些简单的问题可以请知道的同学给予解答。

  (4)学生进行讨论对各问题进行归类分组,确立子课题。

  陆军概况

  我国军人总数?

  女军人数量?

  部队分布地区?

  主要职责?

  当兵的条件?

  军人的生活

  军人伙食?

  军人一定要穿军装吗?

  军人的工资有多少?

  军人的假期有多少?

  军人的工作

  军人一天的工作时间也是8小时吗?

  训练时间有多少?

  所有军人都会打枪吗?

  军人如何升职?

  军人的学习

  军人需要学习吗?

  军人都学些什么?

  军人有考试吗?

  3、规划活动小组

  (1)学生自由选择喜欢探究的方向。投其所好,提高学生探究热情。

  (2)但如果出现某组成员数量偏差较大时,教师适当地采用鼓励的方法给予调整。达到人数平衡,确保各组活动顺利进行。

  4、成立活动小组

  (1)由活动小组内所有成员商议确定小组名称,推选小组长,以及确定本组口号。增加新成立活动组成员间的互动。

  (2)各小组汇报展示自己的组名及口号。增强小组凝聚力,培养小组荣誉感。为各小组团体协作探究做好铺垫。

  5、总结

  (1)对本节课学生仍存在的问题教师给予解答。

  (2)教师总结本节课主要内容。

  (3)鼓励学生课外进行收集整理资料。并做好相关记录及资料的保存。

五年级数学说课稿 篇6

  一、说教学理念

  1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

  二、说教材

  1、教学内容

  《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

  2、学情分析

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

  3、教学目标:

  (1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

  教学重点:

  理解和掌握分数的基本性质

  教学难点:

  学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。

  教具学具:

  课件,三张同样大小的长方形纸条、彩笔。

  三、说教法

  “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

  1、实际操作法

  指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

  2、直观演示法

  先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

  3、启发式教学法

  运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

  四、说学法

  1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

  2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同

  的分数,并尝试完成练习题,达到检验自学的目的。

  五、说教学过程

  (一)、创设情境激趣引新

  (二)、新知探索

  动手操作、形象感知

  观察比较、探究规律

  首尾照应、释疑解惑

  (三)、巩固新知

  判一判填一填找一找

  (四)、扩展延伸

  1、创设情境,激发兴趣,揭示课题。

  上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。

  (设计意图)好奇是学生的'天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。

  2、探索新知

  (1)、动手操作、形象感知

  首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/3,2/6,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。

  (设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

  (2)、观察比较,探究规律

  首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。

  (设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。

  3、巩固新知

  在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=()/()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  4、拓展延伸

  通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习内容,激发学生不断探索新知的欲望。

  六、板书设计

  分数的基本性质。

  分数的分子、分母同时乘以或除以相同的数。

  分数的大小不变。

五年级数学说课稿 篇7

  一、说教材:

  1、教材的地位与作用

  平行四边行面积的计算是苏教版第九册第二单元第一节。这节课的内容是在初步掌握长方形的面积计算及平行四边的基本特征的基础上进行教学的。平行四边的面积是以长方形的面积计算为基础的,把平行四边转化为长方形来计算面积。通过操作、观察、比较、使学生理解,并在此基础上掌握平行四边的面积的计算公式,并能正确计算平行四边的面积。这样可以发展学生的空间观念,渗透事物间相互联系、相互转化的辨证观念,培养学生的演绎推理,逻辑思维及解决问题的能力。同时为以后学习三角形、梯形、组合图形的面积计算打下基础。

  2、教学目标

  (1)知识目标:使学生在理解的基础上掌握平行四边的面积计算公式,能正确地计算平行四边行的面积。

  (2)能力目标:通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究平行四边时的应用,培养学生的分析、综合、抽象和运用转化的方法解决实际问题的能力。

  (3)德育目标:渗透事物间是相互联系的和实践第一的辨证唯物主义思想,培养爱科学、学科学、用科学,加强学生动手操作能力。

  (4)情感和态度:经历猜测,实验验证,作出结论的过程,增强肯于动脑又实事求是的科学精神。

  3、教学重点与难点

  因为计算物体的面积在曰常生活和生产中有着十分广泛的应用,所以本节的重点是平行四边形面积计算公式的推导过程,以及学生能正确熟练地计算平行四边形的面积。教学的难点是如何运用迁移的思想把平行四边形转化成长方形。

  二、说教法:

  根据教材以及四年级学生的特点,我在教学中采用以下教学方法:

  (1)直观演示法:通过多媒体课件演示,使学生对所学知识获得丰富的感性认识,有利于激发学生的学习兴趣,集中注意力,培养和发展学生的观察能力。

  (2)情境教学法:让每个学生都亲自动手制作、演示平行四边形转化成长方形的过程,创设良好的课堂氛围,使学生积极参与到教学活动中,调动学生的学习积极性,变“要我学”为“我要学”。

  (3)实践探究法:引导学生运用转化的方法,启发学生主动探索规律。

  (4)渗透迁移的思想,把新知转化成旧知解决。

  三、说学法:

  “教,是为了不教”,在课堂教学中,我们应重视学生学习的过程,加强学生动手操作,手脑并用;引导学生运用转化的方法,启发学生探索规律;注重对公式产生的全过程进行探求;让学生在提出猜想、验证猜想、应用猜想等一环扣一环的情境中,学会观察,学会表述,学会思维。

  教学过程:

  (一)形象导入,唤起感知

  课件显示(方格纸上的平行四边形) 方格纸上画的是什么图形?其有哪些特征?谁能利用三角板作出平行四边形的高?让学生在自己准备的平行四边形上作高,并强调直角三角板的一条边与底边重合,另一条通过顶点向底边作垂线。为新课的教学作好准备。

  (二)实验操作,引导探究

  1:观察数格,提出猜想

  课件显示(P42的图形)谁能利用以前学过的方法计算平行四边形的面积?强调平行四边形在方格纸上不满格的,该怎么数?通过剪拼,渗透转化的思想,为后面把平行四边形转化为长方形或正方形作铺垫。那么谁来数一数长方形的面积,并比较长方形的'长与平行四边形的底,长方形的宽与平行四边形的高,启发学生说出底和长,高和宽分别相等,两者的面积也相等。如果不用数格,如果平行四边形的面积很大你能有更好的方法求出平行四边形的面积呢?(提出猜想)

  2:实验操作,验证猜想

  在实际的生活中并不是所有的平行四边形都能用数格得到的,因此我们利用转化的思想,通过学生的操作、探索,把平行四边形转化为已学过的长方形,从而把计算平行四边形的面积转化为计算长方形的面积。

  让学生拿出准备好的平行四边形进行剪拼:

  (1)先沿着平行四边形的高剪下左边的直角三角形。

  (2)左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  (3)移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  (4)让学生把自已沿着高剪下的直角三角形按以上步骤把平行四边形转化成长方形。

  3:观察比较,推导公式

  课件显示(平行四边形转化成长方形的过程)并在让学生在剪拼成的长方形边上放一个原来的平行四边形,引导学生结合自已转化的图形仔细观察、比较。

  (1)这个由平行四边形转化成的长方形面积与原来的平行四边形的面积比较,有没有变化?为什么?

  (2)这个长方形的长与平行四边形的底有什么样的关系?高有什么样的关系?

  (3)这个长方形的面积怎样求?转化的平行四边形的面积怎样求?

  (4)让学生明确:任意一个平行四边形都可以转化为一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  沟通关系 因为 长方形的面积=长×宽

  所以 平行四边形的面积=底×高

  (以上的过程,遵循了学生的认知规律,按“提出猜想(设疑激趣)——验证猜想(转化探索)——推导公式(分析应用)的过程,遵循了直观——抽象——应用的教学原则,充分展示教师的主导作用和学生的主体作用,使学生主动参与,探索尝试,激发了其学习的积极性。)

  (5)教学用字母表示平行四边形的面积公式

  教师板书:s=a×h,告知s和h读音,并说明在含有字母的式子里,字母和字母中间乘号可以记作“· ”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成s=a·h或s=ah

  (三)、运用公式,解决问题

  练习题的 设计由浅入深,循序渐进。

  1、教学课本第44页例题。

  指导读题后,引导学生思考:根据什么立式?得数应注意什么?然后让学生独立列式计算,教师巡回指导,集体订正时指名说出是根据什么列式的。

  2、完成第44页做一做的题目

  学生独立练习,教师巡视指导,共同订正。

  完成本节课教学内容后,让学生看书,质疑问难,及时解决问题,巩固所学知识。

  3、多层练习,内化新知。

  为了适应面向全体学生和因材施教的需要,这节课设计了三个层次的练习。

  (1)基础练习。完成练习九的第1、2、3题。(第1题,巩固新学的面积计算公式,三题底与高数值不同,图形中高的位置各不相同,让学生明确底与高必须一一对应。第3题,要求学生会根据底来找高,或根据高来找底,并能正确作高,与引入复习相互应,使整堂课前后呼应,连贯一致)

  (2)联系实际,补充练习。

  (3)动手操作,发展练习:练习十七的第10题。

  (这样的练习,可以让学生发散思维,培养学生的操作能力和创造能力,同时渗透变与不变、联系与发展的辩证思想。这样,针对性强,形式多样,难度适中的阶梯练习,使学生的学习由“理解”上升为“掌握”,难度适中的阶梯练习)

  (四)归纳整理,全课总结。

  教师启发学生归纳总结本课学习的内容,目的是强化重点,形成认知结构。

五年级数学说课稿 篇8

  一、本节课在新一轮课程改革下的设计理念:

  数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

  二、教材分析与处理:

  三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

  三、学生分析

  处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

  四、教学目标:

  1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

  2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

  3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

  4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

  五、重难点的确立:

  1.重点:三角形的内角和定理探究与证明。

  2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

  六、教法、学法和教学手段:

  采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。

  采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的'。

  教学过程设计:

  一、创设情境,悬念引入

  一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

  具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

  二、探索新知

  1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

  (将拼图展示在黑板上)

  2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

  3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

  4.学以致用,反馈练习

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,则∠C=?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

  解:设∠A=x°,则∠B=3x°,∠C=5x°

  由三角形内角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

  第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

  通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

  5.巩固提高,以生为本

  (1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

  (2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

  本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用.能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

  6.思维拓展,开放发散

  如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

  本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

  三、归纳总结,同化顺应

  1.学生谈体会

  2.教师总结,出示本节知识要点

  3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

  四、作业:

  1。必做题:习题3.1第10、11、12题

  2.选做题:习题3.1第13、14题

【五年级数学说课稿】相关文章:

五年级数学说课稿06-09

数学说课稿06-09

《数学广角》说课稿12-19

数学乐园说课稿01-03

数学说课稿08-17

五年级数学分数的意义说课稿09-29

小学数学优秀说课稿05-23

初中数学说课稿11-19

初中数学说课稿09-07

小学数学说课稿10-08