平行四边形的面积教学反思
身为一名到岗不久的老师,课堂教学是我们的工作之一,通过教学反思可以很好地改正讲课缺点,优秀的教学反思都具备一些什么特点呢?以下是小编为大家收集的平行四边形的面积教学反思,欢迎阅读,希望大家能够喜欢。
平行四边形的面积教学反思1
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的'长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
第一层:基本练习:书本P82第1题
有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
第二层:综合练习:
1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
2、你会求出这个平行四边形的面积吗?
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:
数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。
前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。
通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。
平行四边形的面积教学反思2
平行四边形面积的计算是五年级上册第五单元的资料。教材设计的思路是:先经过数方格的方法数出平行四边形的底、高、面积。再经过对数据的观察,提出大胆的猜想。经过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,所以,必须让每个学生亲历知识的构成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自我的操作经历进行小组内的讨论和交流。
课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是与自我的设想大相径庭。
(1)数方格中的得与失。
教材中所设计的数方格的过程是紧跟上图中的花坛来的。把两个花坛按比例缩小后画在了方格纸上,让学生把方格纸上的1格看作1平方米来数。这与学生以前的数法有了细微的差别。再加上平行四边形中有不满1格的情景,怎样才能把面积准确的数出来是学生需要认真思考的问题。所以,我认为,没必要让已经遇到新问题的学生再添上不必要的负担,哪怕是微小的负担。所以,我打乱了图形与花坛原有的联系,没有让学生按课本上的方法去数,而是让学生按照以前的方法,单纯把这两个图形按每个格1平方厘米的方法来数,数的过程中提示学生:“能够把不满一个格的按半个来数,如果你有更方便的方法就更好了。”有利于有本事的同学向转化的方法靠拢。
学生数好以后,说一说数的结果。再让学生说说你是怎样数的?可惜的是由于紧张,这个环节给漏了。这成为本节课的一大败笔。事后我自我安慰自我:其实,只要数出来了,怎样数不重要,重要的是观察数据找规律。但客观上讲,这让我失去了一个渗透割补法的机会。在数方格的过程中,聪明的学生肯定能想到把左侧沿着方格线剪开移到另一侧,把所有的方格变完整再去数。这时,我就能够随即告诉学生,这种割下来补到图形另一侧的方法叫割补法。这样教学能够为学生以后把平行四边形转化成已经学过面积计算的图形做好方法上的`准备。
(2)面积推导中的意外收获。
在推导平行四边形面积计算公式时,我鼓励学生大胆想象,经过动手剪一剪、拼一拼的方法,把平行四边形转化成会计算面积的图形,课前,我并没有对学生抱太大的期望。学生能说出两种方法就很不错了。为此,我还专门准备了一个演示的课件,以备不时之需。但学生的表现出乎了我的预料。
“教师,我是这样拼的。我从平行四边形左上角开始,把多出来的一块向里折,就出现了一条线,然后沿着这条线剪下来,把它拼到平行四边形的另一边,就出现了一个长方形。”王昱璇说。
“教师,我的方法和他的不一样。我是直接把平行四边形对折,然后沿着折线剪开,也能把平行四边形拼成一个长方形。”熊耀方法很独特。
“我是把平行四形两边都剪下来,然后得到了一个长方形。”付玉提出了自我的做法。
“你觉得适宜吗?”我把确定的权利交给了学生。
“不行,虽然也能变成长方形,可是,这个长方形和原先的平行四边形相比少了两块。”刘子谦认真分析道。
“我们的目的是把平行四边形变个样,所以不能让它缺损。”我肯定了刘子谦的说法。
“谁能帮忙改一下?”
“只要把剪下来的两小块加上就能够了。”易凡把剩下的两块细心翼翼地加在了一侧,又把它拼成了一个新的长方形。
“我把平行四边形沿着对角线剪开,也拼成了一个长方形”刘子谦补充说。他的方法立刻引起了争议。
“教师,我不一样意他的说法。我刚才就是沿着对角线剪开的,根本不能拼成一个长方形,我又拼成了一个平行四边形。”易凡拿着自我失败的作品站上来说。
“为什么都是沿着对角线剪开的,这两位同学拼得结果却不一样呢?”我把两位同学的作品同时放在展台上,让大家观察。
“两个平行四边形的形状不一样。”学生很快就找到了原因。
“能拼成长方形的这个平行四边形,它的对角线有什么特点?”我继续引导。
“这条对角线,恰好是平行四边形的高。”
“看来,仅有沿着高剪开才能把平行四边形拼成长方形。”我适时总结。
经过这一环节,使学生明白只要沿着平行四边形的高剪开都能把平行四边形拼成一个长方形。平行四边形的形状变了,可是面积没有发生变化。为后面研究平行四边形与拼成的长方形之间的关系,推导平行四边形面积计算公式做好了知识储备。
这是我比较得意的环节。但功劳不在我,而在我的学生。
平行四边形的面积教学反思3
听了梁老师的这一节课,我的脑海中浮现了两个字,那就是“和谐”,达到如此境界,都归功于梁老师巧搭了数学与生活之桥。
首先是,“数学化”与“生活化”的和谐统一
梁老师在这节“平行四边形的面积”一课中,对数学老师如何在课堂教学中达到“数学化”与“生活化”的和谐统一,给了我们一个很好的诠释。整节课通过普罗旺斯这一现实生活中的数学素材,如停车位的大小比较,花圃的面积,草地的温馨提示牌等,通过精心的教学设计,既让学生感受到数学与生活的密切联系,对数学产生亲切感,又让他们学会用数学的思维思考生活,体味数学的价值。课的各个环节连接自然,如行云流水,可谓清清楚楚一条线!
其次是,数学与德育的`和谐统一
在数学课中怎样做到把品德教育溶于数学课堂,这是我们数学老师经常思考的一个问题。在这节课上,我也得到了满意的答案。梁老师巧妙地设计了李明家和张海家礼让车位,爱护小草的温馨提示语,让学生在学习数学的同时受到了文明礼仪的教育,这种教育如春风细雨润物无声。
再次是,老师指导与学生探究的和谐统一
梁老师虽然很年轻,教学经验尚未丰富,但课堂上却不乏沉着与干练。她总能给学生足够的探究时间和空间,充分发挥学生的主体作用。如在平行四边形面积公式的推导过程中,我们都知道公式是刻板的,而公式的再创造过程却是鲜活、生动而有趣的。在这一探究发现的过程中,学生的多种感官参与了学习活动,学生主动参与,积极探究,而老师只是进行适时的指导,帮助,让学生探索过程中获得了平行四边形面积的计算方法。这使学生最大限度地投入到观察、思考、操作、探究的活动中,使学生亲历“做数学”的过程,体现《课标》中倡导的“动手实践,自主探索,合作交流”的学习方式,使学生体验到学习成功的喜悦。
平行四边形的面积教学反思4
《平行四边形面积的计算》是小学数学第九册的学习内容,属于公式推导课。教学重点是探究并推导出平行四边形的面积计算公式,并能正确运用。教学难点是把平行四边形转化成学过的图形,通过找关系推导出平行四边形的面积公式。由于整个推导过程较抽象,学生掌握起来有难度,因此根据学生的认知规律,本节课充分发挥学生的主动性,在教师的引导下,让每一个学生亲自动手操作,把平行四边形转化为长方形,通过观察、比较、分析、概括、讨论的方法,自己去发现平行四边形与拼成的长方形之间的关系,然后一步步地推导出平行四边形面积的计算公式。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重学法的指导,将转化的思想进行了有效的渗透,让学生学会用学过的知识来解决现有的问题。
上课开始,我先复习所学过的图形及面积计算公式,让学生实现知识的迁移,为推导平行四边形的面积计算公式作铺垫。接着,先是让学生大胆猜测美羊羊和灰太狼的两块菜地(等底等高的长方形与平行四边形)面积哪一个大,激发学生的学习兴趣。在比较长方形和平行四边形两个图形的大小这一教学环节中,学生用了数方格的方法去比较它们面积的大小。然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有了非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时教师可以进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经会算面积的图形来研究。
二、让学生亲身体验,增长自身的经验,体现学生的主体性
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:转化成的长方形面积与原来平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?再充分利用多媒体课件形象、直观地演示,使学生交流总结得出结论:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。在此,我特别强调要注意底与高是相对应的关系,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。学生是数学学习的主人,在教学中给学生提供了充分的从事数学活动的机会,学生在自主探索、动手操作、合作交流的过程中真正理解和掌握了基本的数学知识与技能,数学思想和方法,学生的主体性得以体现。推导出平行四边形的面积计算公式,完成了本节课的知识与技能目标教学。
三、注重学生数学思维的发展和学习水平的`深化
通过有梯度的练习设计,提高学生对平行四边形面积计算的掌握水平。以开放练习的形式,①课件出示平行四边形,使学生关注这个平行四边形的底和对应
的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这样就强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深。②讨论:下列几个平行四边形的面积大小相等吗?通过讨论、交流,使学生明白等底等高的平行四边形的面积相等。通过这些练习进一步丰富了学生的认识,拓宽了学生的思维,有效的提高了课堂教学的效率。
四、增强自身的应变能力
有效的把握学生课堂生成,灵活应对课堂突发的情况,是我今后教学中应注重的。课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出前两种,第三种学生没想出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第三种剪法。教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这样就强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深。②讨论:下列几个平行四边形的面积大小相等吗?通过讨论、交流,使学生明白等底等高的平行四边形的面积相等。通过这些练习进一步丰富了学生的认识,拓宽了学生的思维,有效的提高了课堂教学的效率。
五、增强自身的应变能力
有效的把握学生课堂生成,灵活应对课堂突发的情况,是我今后教学中应注重的。课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出前两种,第三种学生没想出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第三种剪法。教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学反思5
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算;(2)让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。培养学生观察、分析、概括、推导和解决实际问题的能力。(3) 使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透,让所积累的经验为新知服务,渗透“转化”思想
在教学设计方面,我先是让学生大胆猜测两个花坛(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的`思想方法,充分发挥学生的想象力,培养了创新意识。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观, 使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、遗憾之处
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。
本课中我以学生为主体,教师主导,较好地完成了教学目标,但课中有些地方不够完善,需改进。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的面积教学反思6
《平行四边形的面积》一课是多边形面积的起始课,是后续三角形面积、梯形面积的基础。本课是在学生学习过长方形面积的基础上学习的,由于学生有了长方形面积的计算基础,只要学生能找到利用割补法把平行四边形转化成长方形的方法,这节课的重点就突破了。本节课我利用让学生比较两张纸片的大小,引出平行四边形面积的计算,让学生探究平行四边形面积的计算方法。
在以往的教学过程中,很多学生会出现“底×邻边”的错误做法,所以在教学设计时,我把这种情况进行了预设,但是在课堂上全班学生没有一个学生这么回答。由于担心学生在以后的练习中会出现类似错误,同时为了让学生明白不能用“底×邻边”的错误做法,在课堂上我主动提问学生为什么要用“底×高”而不能用“底×邻边”的方法呢?通过利用平行四边形框架进行演示,让学生明白,在平行四边形框架拉伸的过程中,底和邻边的长度没有变,但是平行四边形的面积在逐渐缩小。说明平行四边形的面积和底、邻边的长度没有关系。
为了让学生明白计算平行四边形的面积时底和高的对应关系,我设计了三个动手操作的环节。首先给学生出示一个底是5厘米、高是3厘米高的平行四边形,让学生思考,看到这个平行四边形你想到了什么图形?学生很容易就想到了长是5厘米,宽是3厘米的长方形。第二次给学生出示一个底为7.5厘米,高为4厘米,另一条邻边的高是6厘米,再让学生思考并动手操作这个平行四边形可以转化成什么样长方形,大部分学生直接说出是长是7.5厘米,宽是4厘米的长方形。有几个同学说可以沿着6厘米的高剪下来,也可以拼成长方形,只能说出长是6厘米,但不知道宽是多少。让学生明白不可能剪出长是7.5厘米,宽是6厘米的长方形。第三次给学生出示一个底是30厘米,高是15厘米,另一组边是18厘米,高是25厘米的'平行四边形。学生分别想出了剪成长30厘米,宽是15厘米和长是25厘米,宽是18厘米的长方形。通过这三个环节,让学生明白计算平行四边形的面积时必需是底和高是对应关系,不能随便计算。
本节课的不足之处是,在课堂上自己说的太多,让学生思考回答的少,学生回答时还总是怕学生说不好,帮助学生说,在以后的教学中要多放手,学会耐心等待,学生的能力得到锻炼了,学生的积极性也会大大提高的。
平行四边形的面积教学反思7
平行四边形面积的计算是以长方形的面积计算为基础,它为进一步学习三角形的面积,梯形面积的计算打下了基础。我在教学本节课时,采用剪拼的方法,把平行四边形转化为与它相等面积的长方形,从而把新旧知识联系起来,从长方形的面积公式推导出平行四边形的面积公式。
在本节课的教学中,我先复习长方形的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,为下面要学习的平行四边形面积作铺垫。当让学生通过数方格说出平行四边形的面积时,学生很容易数出面积,并且说出它的底和高的长度。我及时抓住这三个量,让学生大胆猜想:平行四边形的底和高与它的面积之间可能存在什么关系呢?这个问题很快激起学生的探究欲望,为下面要探讨的平行四边形面积公式的.推导做好铺垫。
为体现学生的主体地位,改变以往的“以教师为中心”的教学方式,在推导平行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,对学习要求中提出的第2、3个问题:转化后的图形与平行四边形有什么关系?你认为平行四边形的面积该怎样求?学生在小组合作中各抒己见,充分阐述自己的理解,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。
在教学完这节课后,听课老师、评课的领导对本节课进行了评价,从这节课中我看到了自己的不足之处,下面认真进行剖析:
1.课的开始复习内容过长,导致本节课新授知识部分时间不多。练习题与检测题进行的过于仓促,使基础不够好的学生没有充分理解和掌握。复习内容中指出平行四边形的底和高这部分内容可以删去,在新课教学中体现出来。
2.复习部分长方形的面积的两种求法与通过数方格求平行四边形的面积应该同时在课件中显示,进行比较,从而引入新课。
3.教学中某些环节的过渡不恰当。如:长方形的面积学生通过数方格和利用公式求出来了,平行四边形的面积学生通过数方格说出来后,可以说:除了数方格,那么能否像计算长方形的面积那样存在一个面积公式呢?很自然为下面要推导的公式作准备。
4.学习要求的设计不够合理。我提出了两个学习要求:(1)自学课本第65页。(2)小组合作完成三个问题。两个要求要综合起来体现,让学生为了完成所出示的任务,自己通过看书,小组合作交流,边看边操作来完成。
针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。
平行四边形的面积教学反思8
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的;动手实践、自主探索与合作交流,是学生学习的重要方式。这节课中,我在学生想想、剪剪、拼拼等活动中,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。让学生有理有据地思维,即达到了“平行四边形面积”的主动构建。调动了学生已有的知识和经验,去解决问题,“创造”知识。使他们将接受知识的过程转变为能动参与过程,成为真正的探索者、发现者、创造者。有利于学生创新意识与实践能力的培养。
主要体现在以下几个方面:
1、本节课充分的利用教材,引导学生去发现教材中隐藏的数学知识,发挥了教材在教学中的主题作用。
2、从生活情境出发,为学生创设探究学习的情景。
在教学中,教师首先让学生观察街区图。让学生看到各种图形都是来源于生活实际,也体会到了计算它们的面积的用处,这就使学生对学习平行四边形面积计算的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
小学数学内容来源于生活实际。只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。新课程强调把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的.乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
3、重视学生的自主探索和合作学习
在教学中,通过先让学生利用数方格填表格的方法,初步了解给出的平行四边形的面积和长方形的面积是相等的,接着引导学生观察、发现表格中的秘密,猜想出平行四边形的面积等于底乘高,最后学生小组合作通过动手操作把平行四边形转变成长方形,进一步验证了学生的猜想。在这节课中教师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……这样才能迸发出学生创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
“学习任何知识最佳的途径都是由学生自己去发现,因为这种发现才是最深刻、也最容易掌握其中内在规律性质与联系”。经过学生动手、动脑、交流,把求平行四边形面积这一探索过程充分展示出来。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展了学生的空间观念。
4、充分利用教学资源,自制课件,发挥多媒体辅助教学功能。
本节课还充分发挥了计算机辅助教学的功能,直观、形象、动态地展现知识的形成过程,有效地突破教学难点,帮助学生深刻理解新知,建立清晰表象,提高教学效果。
总之,本节课学生亲身经历了探索的过程,在头脑中建构了新的数学模型,使学生体验到成功的喜悦。教学成功的关键在于关注了学生的学习过程,不是让学生机械地重复历史中的“原始创造”,而是让他们根据自己的体验并用自己的思维方式重新去创造出有关的数学知识;不是盲目接受和被动记忆课本或教师传授的知识,而是让学生主动运用已有的知识和经验进行自我探索,自我建构。创设了一个有利于学生生动活泼、主动发展的教育氛围,教师要真正成为教学的组织者、引导者和合作者。
平行四边形的面积教学反思9
一、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在我这节课中,我让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
二、注重师生互动、生生互动
整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。所谓“互动”就是在课堂教学中师生要有交往,生生要有交往,不能是教师的“满堂灌”、“满堂问”、“满堂练”。师生应该互有问答,学生与学生之间要互有问答。在这节课中,教师始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。在这节课中,每一个环节,都对学生提出明确的要求,引导学生思考,动手操作,推理与表达,并让小组到台前汇报,充分展示,开展小组学习竞赛。
三、练习的设计,由浅入深,环环相扣。
1、是让学生应用公式计算平行四边形面积,通过板演强调书写格式。
2、是让学生判断三个平行四边形的面积计算的对与错,让学生明白计算平行四边形的面积要用对应的底和高相乘。
3、是计算两组平行四边形的面积,通过评价让学生指导第二个平行四边形可以用两种方法来计算。
4、是判断在一组平行线之间的.两个平行四边形的面积是否相等,明白等底等高的两个平行四边形的面积相等。
5、让学生知道已知平行四边形的面积与高,求底要用面积除以高;知道面积与底求高要用面积除以底。
6、让学生课后探究,把平行四边形拉成长方形,面积有没有变化,周长有没有变化,拓展学生思维。
不足:
课堂上有效的评价语言在本节课中的体现不够完善。自己觉得在引导和组织学生上欠缺一些,教学过程当中教学机智不够灵敏,这也是我今后所要重点刻苦钻研的一部分。
平行四边形的面积教学反思10
本节课的重点是推导和理解平行四边形的面积公式,平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。对学生学习推导三角形、梯形面积公式以及今后学习具有重要意义。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。
在设计教学过程时,我注意了以下几点:
1、以复习长方形面积公式引入新课。(“转化”的起点)
2、让学生通过课前预习活动,思考例1,引导学生形成两个方面的体验:一是有些不熟悉、较复杂的图形,可以转化成熟悉的、较简单的图形;二是转化后要便于比较相关图形的面积,让学生形成初步的转化意识。在设计过程中,我将例2做了变化,用问题情境形式展示出来,并和例1联系,将平行四边形的面积与长方形面积进行比较,明确转化的方向。
3、动手实践,完成转化。让学生通过剪、移、拼等操作活动,完成平行四边形到长方形的转化。此时,要让学生明确“沿高剪开”的必要性。(转化的关键)
4、引导学生通过比较分析,得出平行四边形面积的计算公式后,再现公式的推导过程,并进行小结,同时启发学生去感悟平移和转化的数学思想方法。(进一步落实数学思考目标)
这教学过程中,我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的`长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
5、保证课堂练习的质量和时间,以使学生牢记和熟用公式。学生通过亲历这个过程,不仅能够牢固掌握并熟练运用S=ah这个公式,而且对平移和转化的数学思想方法有了初步体验,在数学思维和学习方法上进行了一次有效的积累,感受了成功的快乐,增强了学习的兴趣和信心。
平行四边形的面积教学反思11
《平行四边形面积的计算》这一内容是在学生学习了长方形、正方形面积计算以及平行四边形的特征,并会画出平行四边形的底和对应的高的基础上进行教学的,是学习三角形、梯形面积计算的基础。现将本节课的教学反思如下:
1.重视操作体验,发展学生空间观念
《数学课程标准》指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
教学中,我关注学生已有的知识经验,充分放手,先让学生大胆猜想,积极地为自己的猜想寻找验证的方法,这样学生主动地参与到学习中。接着我引导学生利用手中的学具,让学生动手实践,学生在实践过程中想到了数方格和剪拼的方法,自主探究出平行四边形沿着高剪下来能转化为长方形的方法。小组交流、集体汇报找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,再利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
2.注重思想方法渗透,引导探究
“转化”是数学学习和研究的一种重要思想方法。学生虽然想到了把平行四边形变成长方形,但并不知道这就是“转化”,我对学生的这一方法进行了提升。在具体操作过程中,我努力让学生通过“猜想——验证——结论”的过程,帮助学生掌握探索问题的一般方法,为后面探究三角形、梯形的面积计算方法提供方法迁移。
运用现代化教学手段,对几种剪拼的方法进行总结,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
3.注重优化练习,拓展思维
练习设计的.优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。
第二题4道判断题,包含了学生的一些常见错误。第一道是强调面积单位,第二道强调计算时单位名称的统一,第三道强调平行四边形的面积是底乘高而不是底乘邻边,第4道强调底和高必须对应,强化学生的认知。
第三题比较平行四边表的面积,认识等底等高的平行四边形的面积相等。本课练习能促使学生牢固的掌握新知。
值得反思的的是:
1.平行四边形转化成长方形课本上给出了两种方法,一种是沿着平行四边形的左上角的顶点剪开,另一种是沿着任意一条高剪开。其实并不是只沿着高剪开能拼成长方形,我能想到的还有将两个角剪下来平移到相对的部分。在教学过程中并没有展示这种方法,一是在学生探究过程中学生没出现这种方法(也许放的不够的原因);二是考虑到学生的实际水平,不敢讲得太深。
2.沿着平行四边形的高剪下来平移到相对的部分,一定会拼成长方形吗?这也是需要验证的。也是考虑到实际情况,把这一部省去了,不知道是否会给学生造成错误的思维方式,是不是扼杀了学生数学的天赋。
3.预设不充分,学生的主体地位体现不够。展示数方格这种方法的时候,学生是沿着平行四边形的高剪下来,移到另一边去拼成长方形,把半格的拼成整格来数,这是一种多么好的方法,但老师不但没有预设到,而且没有及时领会到学生的意图,急于走预设,把正确答案给出,导致这一环节不完整,教师思路不那么清晰了,这是我今后最应该注意并改正的。
4.透过这一节课的教学可以看到,很多学生不敢动手,有想法不会表达,所以我们一线教师应该清醒地认识到加强常态课研究的必要性,在日积月累中提升学生的数学素养。
教学是一门有着缺憾的艺术。做为教师,往往在执教后留下或多或少的遗憾,只要我们思考了,改进了,我们的课堂就会更加精彩。
平行四边形的面积教学反思12
这节课我们所学习的的内容主要是平行四边形面积的计算。是在学生以前学过的长方形的面积和平行四边形认识的基础上学习的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的.来源。
一、课程开始,我先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?
平行四边形的面积怎么求呢?猜想平行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。
二、注重学生数学思维的发展
在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现平行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出平行四边形的面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、不足之处
本节课还有一些不足之处。在进行把平行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。
平行四边形的面积教学反思13
今天我教了平行四边形的认识,课前让同学们进行了以下预习:
(1)说说生活中那些地方看到过平行四边形?
(2)自己做一个平行四边形。
(3)根据自己做的平行四边形探究一下平行四边形有什么特点?
(4)有兴趣的可以做做后面的练习题。
一上课我就交流了预习作业,同学们兴致很浓,做的平行四边形材料不一,有的.用吸管做的正好为研究后面的第6题作准备,有的用钉子板围的,有的在纸上画了个平行四边形……做的好的得到了老师的表扬,看他们的表情好神气哟!在探究平行四边形的特征时,有的学生竟然说到了对角是相等的。看来四年级的学生不可小看他们。
尤其是在讨论长方形和平行四边形的相同点和不同点时,杨家豪大胆的说出当把长方形变成平行四边形时面积变小了,周长没有发生变化。当时我呆了,问他为什么呀?他还为同学们演示了一番。这节课我上得好开心,可能由于预习的缘故,学生的思维比较活跃,有时生成的知识也是我始料未及的。
平行四边形的面积教学反思14
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教具学具:自制长方形框架、方格纸、课件、平行四边形卡片、剪刀、三角板、直尺等。
教学过程:
一、创设情境,铺垫导入
1、(出示教具)这是一个长方形框架,它的长是6厘米,宽是4厘米,它所围成的长方形面积是多少?你是怎样想的?
(板书:长方形的面积=长×宽)
2、如果捏住这个长方形的一组对角,向外这样拉,(教师演示)同学们看看,现在变成了什么图形?(平行四边形)
3、你还知道关于平行四边形的哪些知识?(出示课件平行四边形)
4、这样一拉,形状变了,面积变了吗?
5、(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?(生:平行四边形的面积等于相邻两条边的乘积)
6、究竟这个猜想是否正确,下面我们一起来验证一下就知道了。
请同学们用数方格的.方法来算出这个平行四边形的面积,(教师把长方形及拉成的平行四边形框架放在方格纸上,数一数它们的面积)数的时候要注意,每个小方格的面积是1平方厘米,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是18平方厘米,使学生明确拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积。)
7、看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1、用数方格的方法计算平行四边形面积。
(1)、出示面积和平行四边形相等的一个长方形。提问:数一数,这个长方形和这个平行四边形的面积相同吗?
(2)、小组讨论,观察比较两个图形的关系,提问完成表格。提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(3)根据你的发现你能想到什么?
2、图形转换
(1)、不数方格能不能计算平行四边形的面积呢?(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把这个平行四边形转换成一个与它面积相等的图形来计算它的面积呢?(能)可以转换成什么图形?(长方形)怎样将平行四边形转换成与它面积相等的长方形?
(2)四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作,小组汇报上台演示剪拼过程)边剪拼边观察思考:拼出的长方形和原来的平行四边形相比,面积变了没有?拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?(板书:平行四边形 底 高)
(3)(教师演示说明)这个长方形的面积与原来的平行四边形面积相等,这个长方形的长与原来平行四边形的底相等,这个长方形的宽与原来平行四边形的高相等。(板书连接符号)
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积怎样计算?(平行四边形的面积等于底乘高)
(板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)(教师板书:S=ah)
4、出示例1(课件),例1给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)要求平行四边形的面积,必须知道什么条件?
三、层层递进,拓展深化
1、算一算,填空,(课件出示)指名回答。
(1)、一个长方形的长是5厘米,高是3厘米,这个长方形的面积是( )平方厘米。
(2)、一个平行四边形的底是8米,高是5米,这个平行四边形的面积是( )平方米。
(3)、一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是( )平方分米。
2、用手势判断对错(课件出示),先读题后再判断,并说说错误的原因。
(1)、把一个平行四边形割补成长方形,它们的面积相等。( )
(2)、一个平行四边形的底是7分米,高是4分米,面积是28分。( )
(3)、一个平行四边形的底是5米,高是4分米,面积是20平方米。( )
3、想一想 :(课件出示在一组平行线之间有两个等底等高的平行四边形图。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形面积相等)
四、总结全课,提高认识
反思一下刚才我们的学习过程,你有什么收获?
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?
平行四边形的面积教学反思15
教学内容:
苏教版五年级上册第二单元第一课时。
教材分析:
本册教材中《平行四边形面积的计算》,是在学生掌握学过的几何知识的基础上安排的。要想使学生理解掌握好平行四边形面积公式,须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,与学习三角形和梯形的面积公式有着直接的关系。学生学完长方形面积及平行四边形的认识后,知识需进一步深入探索,因此本节课是几何知识的一个比较重要的、典型的知识点。表现其一:平行四边形的面积计算的推导过程,要用到猜想实验探究,突破原有认知,体会并应用忽略次要因素、抓住主要因素这一科学思维方法,这不仅有利于学生掌握分析数学问题的方法,也有助于培养学生的探究能力;其二,这是一个贴近日常生活的实际问题,能激发学生的学习兴趣和体会数学的'生活化。本节内容的学习也为以后的三角形面积、梯形面积打下基础。
教学目标:
1、知识与技能:使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。
2、过程与方法:引导学生操作、观察、比较,发展学生的空间观念,使学生初步知道转化的数学思想方法。
3、情感态度与价值观:培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
理解平行四边形面积公式的推导过程。
教具准备:
课件,平行四边形纸片,长方形纸片。
教学过程:
一、激趣与质疑
1、师:说出学过的平面图形。
生:长方形、正方形、平行四边形、三角形、梯形、圆形。(课件出示)2、师:在这些图形中,你会计算哪些图形的面积?
生:长方形、正方形,长方形面积=长×宽,正方形面积=边长×边长。
(课件出示)
二、合作与探究
1、教学例1:(1)第1组图:师:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
生1:相等,用数格子的方法。生2:相等,用平移的方法。(2)第2组图
师:用刚才第二位同学的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。板书)
生:能。把小三角形平移到右边就变成了右边的图形。(3)揭示课题:师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)
2、课件出示题目:美羊羊有一块长5米、宽4米的长方形菜地,灰太狼有一块底4米、高5米的平行四边形菜地,灰太狼说:“美羊羊,你的地离我家近,我的地离你家近,我们俩把菜地换一下吧?”,聪明的你想一想,比较一下这两块菜地面积的大小。美羊羊能答应吗?
(1)指名学生读题。(2)初步猜想:
师:你认为这两块菜地的面积哪个大?哪个小?并说说这样猜想的根据。学生交流。
生1:平行四边形面积大,长方形面积小。生2:一样大。
师:下面我们一起来探究平行四边形的面积怎样计算。 3、教学例2:
(1)课件出示一个平行四边形
师:你知道这个平行四边形的面积吗?用什么方法?生:数方格。
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。(3)学生交流操作情况,汇报:生1:第一种:①沿着平行四边形的高剪下左边的直角三角形。 ②把这个三角形向右平移。 ③到斜边重合。生2:第二种:①沿着平行四边形的任意一条高将其剪为两个直角梯形。 ②把左侧的梯形向右平移。 ③道斜边重合。
师:那么还有没有第三种方法?(没人回答)师:沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。(4)教师用课件进行演示并小结。
师:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
(5)小组讨论:①转化后长方形的面积与原平行四边形面积相等吗?②长方形的长与平行四边形的底有什么关系?③长方形的宽与平行四边形的高有什么关系?
(6)学生总结:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。形成下面的板书:
长方形的面积=长×宽
平行四边形的面积=底×高
3、教学例3:
(1)师问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。转化成的长方形长/ cm平行四边形底/ cm宽/ cm面积/ cm2高/ cm面积/ cm 2
(2)学生动手操作,反馈交流。
(3)师:如果用字母a表示平行四边形的底,用字母h表示平行四边形的高,那么用字母来表示平行四边形的面积公式:
S= a×h或S= a·h或S = ah(板书)。
三.巩固与展示
1、计算出灰太狼的平行四边形菜地面积与美羊羊的长方形菜地面积比较。 2、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
3、指导完成练一练:强调底和高的对应关系。
4、课件出示4个等底等高的平行四边形,比较其面积大小。得出结论:等底等高的平行四边形面积相等。
四.评价与扩展
通过今天的学习活动,你学会了什么?有哪些收获?
板书设计:
平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长×宽所以平行四边形的面积=底×高用字母来表示平行四边形的面积公式:
S= a×h或S= a·h或S = ah
【平行四边形的面积教学反思】相关文章:
平行四边形的面积教学反思08-21
《平行四边形的面积》教学反思08-21
平行四边形面积的教学反思05-13
面积的教学反思05-08
圆的面积教学反思12-04
《认识面积》教学反思06-24
《梯形的面积》教学反思10-13
《梯形的面积》的教学反思06-08
认识面积教学反思05-11