当前位置:语文迷>教学文档>教学反思> 面积的教学反思

面积的教学反思

时间:2024-05-08 16:46:15 教学反思 我要投稿

面积的教学反思

  作为一位到岗不久的教师,我们的任务之一就是教学,通过教学反思能很快的发现自己的讲课缺点,优秀的教学反思都具备一些什么特点呢?以下是小编帮大家整理的面积的教学反思,欢迎大家分享。

面积的教学反思

面积的教学反思1

  面积和面积单位的初步认识,主要是要求学生知道面积的含义,认识面积单位平方米、平方分米、平方厘米,初步建立1平方米、1平方分米、1平方厘米的概念。学生对于长度、面积、体积三种单位极易混淆,而且学生的思维能力也相当薄弱。纠其原因,学生没有形成准确鲜明的表象可能是根源之一,有些是教师直接告诉学生定义,公式。让学生背熟也是原因之一。其实这远远不够,我是这样进行教学的。

  一、让学生在活动中感受面积

  学生学习了1平方厘米的形状和大小,并能度量较小的平面,图形的面积后,我有意让学生用1平方厘米去量课桌的表面的面积,学生在实践中发现了1平方厘米这个单位太小,这时我安排了学生看书自学平方分米,学过了一平方分米并用1平方分米量了相应的表面积之后,我让学生用1平方分米量干墙面的面积,学生又发现1平方分米不适合量墙面,我再次让学生看书学习平方米。

  二、创造单位,猜想获新

  在学习平方米时,我明显感受到学生看书的积极性不像学习平方分米时积极主动,回忆教学过程,我已第二次使用自学看书的方法,学生的'热情自然不会很高,那么这一环节可不可以进行改进呢? 经过和同事的探讨,他们认为猜想的效果好。 因为学生具备的旧知识通过努力是可以达到新知的彼岸的,学生已学过了平方厘米、平方分米、这两个单位,老师再次用看书自学的方法让学生学习平方米,学生当然觉得索然无味,采用猜想创造就不一样了。教师可以说:“平方分米不适合量墙面,那个适合量墙面的面积单位可能是什么呢?猜一猜?” 这样,有意撩拨一定会点燃学生求知的欲望,学生也会在推断中获得数学猜想的成功与快乐。

  三、思想渗透

  思想教育应渗透到各个学科之中,相对于语文来说,数学可能离思想远一些,但我认为这并不影响我们对学生的教育,如这节课中,我的话虽不多,遵守纪律和刻苦学习的精神和集体主义思想却悄悄地潜入到了学生幼小的心里。这比空洞的说教,牵强的附会的效果要好得多。 思想渗透一定要把握好时机,以数学教学过程为载体,结合教学内容,符合学生年龄的特征。

面积的教学反思2

  此次,我执教的是《梯形的面积》一课,这节课的教学目标是:

  在实际情境中,让学生认识计算梯形面积的必要性;在学生自主探索的活动中,经历推导梯形面积公式的过程;能运用梯形面积的计算公式,解决相应的实际问题。从整个教学过程看,这一目标得到了充分的落实和体现。梯形面积的计算方法的推导,正确计算梯形的面积,作为教学重点、难点,也贯穿于整个教学环节中。

  对于本节课,我觉得有以下几点值得思考:

  一、尊重学生的认知规律,注重知识的前后联系

  我在设计教学时,就关注学生已有的知识、水平和经验。由于学生学过了平行四边形和三角形的面积,而梯形的面积公式推导方法与三角形的面积公式推导方法有很大的相似之处,我就放手让学生自己利用前面的学习经验,推导出梯形的面积公式。

  二、以学生的活动为主,实现生生互动。

  本节课力求让学生自己去发现和概括梯形的面积公式,在探究的.过程中发展学生思维的创造性。为了达到这一目的,我让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“剪、移、转、拼”的活动,让学生真正亲历知识的探究过程。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。

  三、学生自主探索的活动在时间上给以保证

  本节课一系列活动的设计是为了学生给充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的表现和发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,我进行点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式的目的。

  四、贴近生活实际,让学生成为课堂的主人

  新课程标准提倡课堂教学要把数学知识和生活相联系,将数学学习置于生活的背景之中。为了帮助学生更好的理解本节课的内容,教学本节课时,我的整个教学过程始终紧密联系了学生的生活实际,为学生创设了生活化的数学情境。如在导入新课时,我让学生求出生活中的篮球场3秒钟限制区的面积,练习中让学生动手量量梯形学具的数据,再求它的面积,又求出梯形菜地的面积等等,真正做到了数学知识从生活中来,回到生活中去,提高学生分析问题、解决问题的能力,让学生是成为课堂的主人。

  这节课的教学已经结束,自己感觉教学过程顺畅,是一节自己比较满意的课。但鉴于我还年轻,对于很多细节,觉得仍需要推敲,相信自己会在今后的教学中不断探索,使自己的教学日趋成熟、完善。

面积的教学反思3

  1、组合图形的面积是学生学习了长方形、正方形、平行四边形、三角形和梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。

  2、上课的时候我一开始设计了复习基本图形的面积,为下面计算组合图形的.面积打下基础。接着用长方形、正方形、平行四边形等基本图形拼出一些美丽的图案,体会组合图形的特点,为引入组合图形做好了准备,以旧引新顺其自然。又认识了生活中的组合图形,感知数学无处不在,有了这些基础学生很顺利的进入新知识的探究。

  3、我认为本课的重点是使学生发现、理解、掌握己酸简单组合图形面积的方法和策略。所以,在探究过程中让学生动手操作,合作探究,理解并掌握了组合图形的面积的计算方法。课堂上首先让学生把图形分成已学过的简单图形,通过画辅助线表示出来,接着让学生来说说自己的分法,学生汇报了不同的分法后,就让学生用自己喜欢的方法进行计算,然后让学生汇报展示。从中小结优化出无论分割与添补,图形越简单越好,越简单越便于计算,同时还要考虑到分割或填补的图形与所给的条件的关系。

  本节课也有一些遗憾,如:有的学生观察组合图形的方法不够灵活,有的学生在计算中总是粗心,有的总忘了公式的正确运用方法,这些不足将在以的的学习中不断改正,使他们能灵活、正确地运用公式求组合图形的面积。

面积的教学反思4

  “面积和面积单位”一课,概念比较抽象,只有调动了学生的多种感官参与到学习的活动中,才能形成概念的正确表象,借助表象才能进行正确判断和推理。为此,我为学生创设了一系列的数学活动,如摸数学课本封面、桌面、手掌心的面,感知物体的表面,体验物体的'表面有大有小;在学习常用面积单位时,我又引导学生直观的用学具小方块去拼摆。当方块数不同,方块大小又不一样时,这样比较面积大小,不断产生新的认知冲突,体会到统一面积单位的必要,使他们经历了从观察——重叠——拼摆——用统一的标准来摆——面积单位的建立这一过程,从而引发学生的心理需求。由于调动了学生多种感官参与数学活动,头脑中形成了鲜明的,正确的“面积”的表象,抽象概括“面积”意义就水到渠成。

  这堂课为了完成教学任务,我快马加鞭往前赶,使一些活动缺乏实效。还不得不漠视了许多孩子的感受,说是开放却放的不开,时间一到不管孩子们的探究是否成就将活动嘎然中止。看着孩子们活动的兴趣盎然,瞧他们的认真劲儿,我的心情难以平静,我应该尽可能使每个活动更充分、有效。

面积的教学反思5

  提问:请大家想一想,我们在推导平行四边形面积计算公式时,用的是什么办法?(割补法)(多媒体动态演示)

  (边演示边讲解:沿着平行四边形的高剪开,将剪开的三角形移至右边补上,拼成一长方形,根据原来平行四边形与拼成的长方形之间的关系推导出平行四边形面积公式)。

  导入:把所学图形进行分割、拼摆转化成学过的图形,然后根据学过图形的面积计算公式推导出新图形的面积公式,今天我们也按这种思路来推导圆的面积计算公式。

  割补图形(四人小组):

  1.将圆4等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  2.将圆8等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  3.将圆16等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  4.将圆32等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  检查操作结果(多媒体演示):

  把圆平均分成4等分,拼成的图形很不规则。

  把圆平均分成8等分,拼成的图形近似于平行四边形,边的形状显波浪形。

  把圆平均分成16等分,拼成的图形更近似于平行四边形,边的形状较直。

  把圆平均分成32等分,拼成的图形非常近似于平行四边形,边的形状更直。

  请同学们闭上眼睛想一想:如果我们继续将圆等分成64份,128份,……结果会怎样呢?(对,如果把圆面等分的份数越多,那么拼成的图形会越接近于长方形)

  (请睁开眼睛看屏幕,多媒体演示64等分)

  推导公式:

  刚才我们把圆转化成了长方形,那么如何根据长方形的面积推导出圆的面积公式呢?

  我们以把圆16等份,拼成长方形为例来推导(同桌讨论)

  拼成的近似长方形的宽相当于圆的什么(半径)

  拼成的近似长方形的长相当于圆的什么?(周长一半,c/2=2πr/2=πr)

  圆转化成长方形时,尽管图形发生了变化,但什么没变?

  因为圆的`面积和长方形面积相等,

  所以长方形的面积=长×宽

  圆的面积=πr×r

  =πr·r

  学生复述、多媒体演示,集体复述:

  近似长方形的长相当于圆的周长的一半(闪动),

  近似长方形的宽等于圆的半径(闪动)

  长方形的面积=长×宽

  所以圆的面积=πr×r

  (r×r可以写作r的平方,表示两个r相乘)

  用字母表示:S=πr·r

  教后反思:学生的学习能力不是靠传授形成的,而是在教学活动中,靠学生自己去“悟”、去“做”、去“经历”、去“体验”的。圆面积计算公式的推导是教学的一个难点。本节课通过直观演示和学生动手操作等方法,充分运用多媒体课件辅助教学,给学生以生动、形象、直观的认识,通过学生多次不同的剪拼,采用转化、想象等,利用等积变形把圆的面积转化成学过的平面图形,逐步归纳出圆的面积计算方法。这样多层次的操作,多角度的思考,既沟通了新旧知识的联系,又培养了学生的推理能力。这个环节,让学生充分经历了操作、观察、想象、推理、反思等数学活动与数学思考过程,明确了圆的面积与半径之间的关系。充分的探究活动,既培养了学生的空间想象能力,也培养了学生的合情推理能力,有效促进了学生思维能力的发展。<

面积的教学反思6

  《圆的面积》是小学数学教学中的一个难点,又是学习圆柱与圆锥的基础,圆面积公式的推导过程运用了“极限”的思想和方法,这对小学生来讲是深奥难懂的。教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形(主要是长方形)来计算面积,引导学生自主推导出圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂问题的策略。

  学习此知识之前,学生已初步认识了圆,理解了面积的含义,并且掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算公式的推导过程,因此学习圆的面积公式推导过程时只需要教师启发、点拨学生依然从转化的思想入手,将圆转化为已学过的图形进行计算,然后通过等量代换得到圆面积公式。因此,新课内容必须从贴近学生生活的情境出发,激发学生的探究欲望,降低内容的抽象性,引导学生用转化的方法推导出圆面积的计算公式。

  本节课,我认为我主要有以下几个亮点:

  一、重视自主探究,发挥学生主体性。

  在教学“圆的面积”计算公式推导时,我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,有效地体验从猜想——实践验证——分析——归纳总结的科学探究问题的方法。看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。例如:想一想以前咱们学过了哪些图形的面积计算公式?(长方形、正方形、平行四边形、三角形、梯形)这些面积公式都是怎样推导出来的?(生边回答课件边演示平行四边形、三角形、梯形的面积公式推导过程)从这些面积公式推导过程中你得到了什么启发?(都先转化成长方形,可否将圆也转化成长方形呢?)怎么转化?(生讨论,看书等后回答:把圆分成若干等份,拼成长方形),你想分成多少等份?(16等份)多点行不行?(众说不一,同桌讨论后回答:行)为什么呢?(分的等份越多,拼成的图形就越接近长方形)如果越少呢?(拼成的图形就越不象长方形)如果分成两等份呢?(用两个半圆试拼)(那就拼不成长方形了)现在我们将这个圆分成16等份,请两个同学上台拼一拼,大家首先看圆周围的黑线表示圆的'什么?(周长)这条红线呢?(半径)这两条线很顽皮,在拼的过程中要跟我们玩捉迷藏,一定要盯住它们各藏到哪儿了?(学生操作)他们先把两个半圆展开,然后犬牙交错地拼在一起,成了什么图形啦?(长方形)是精确的长方形吗?(不是,是近似的)为什么?(上下两条长边上有许多小包包)对,两条长边不是直的,是波浪形的,怎样才能使它接近一条直线呢?(把圆分的等份越多,就越接近直线)好,现在我们就将圆分成32等份拼一下,为了便于观察,我们用课件来演示。同样用黑线表示周长,红线表示半径。也学这两位同学这样拼起来,成了一个什么图形?(几乎是一个长方形了)这样一拼之后,什么变了?什么没变?(形状变了,面积没变)现在大家找一找,黑线和红线各藏到哪里去了?(黑线分成了两段,到了长方形的上下两边,红线到了长方形的右边)各成了长方形的什么呀?(表示圆周长的一半成了长方形的长,表示半径的红线成了长方形的宽)(老师对应地板书)长方形的面积等于长乘以宽,那么圆的面积等于什么呀?(学生互相合作,推导出圆面积公式)(老师对应板书并熟读公式)好,现在大家用学具拼一拼,看还能拼出什么学过的图形?(可以拼出近似三角形、平行四边形、梯形)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨。

  二、运用多媒体手段,激发学生学习兴趣。

  在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣,为学生今后圆锥,圆柱奠定了有力的基础。

  三、练习坡度适当,由浅入深地掌握知识。

  课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

  课后设想:

  圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。但回头想想,也可以把圆的面积分两课时来上,一课时是让学生操作,圆可以转化成什么图形?第二课时才深入地研究如何推导圆面积的公式,这样费时多些但对学生的能力开拓会更有好处。

面积的教学反思7

  《不规则图形的面积》是新改版的数学五年级上册《多边形的面积》单元里新增的一个内容,虽然新旧教材里都有相同的教学素材,但教学目标要求明显不一样。旧版教材上是作为一个拓展性的实践活动,而新版教材是作为一个必学的例题来安排的,目的就是要让学生学会用数方格的方法估计出不规则图形面积的大小。

  以前接触较多的估算教学多数是在数与代数的领域,而今天一课的`估算却出现在图形领域,这对学生的思维能力、想象能力是一个不小的挑战。学生在中年级时也曾接触到一些简单不规则图形面积的估算,但那时学的方法就是直接的将不满一格算成半格,学生的思维深处已经有了一定的方法依托。而现在五年级教材上的估算,还要求学生会估图形面积的上限、下限,知道面积的取值范围,对学生提高了要求。在实际教学过程中,学生数方格是一个难点,由于格数多,学生很容易数错,在这里我没有给予学生一定的方法指导,比如大块由满格组成的不规则图形分割成几个基本简单图形,分块计算,这样情况应该要好得多。可惜当我意识到这个问题时已经太迟了。

  这是今天课堂目标缺位的一个方面。教学目标的制定还要更丰满些,不能过多地停留在知识技能的'层面,要重视学生的情感体验。思考题可以不放在本课研究,因为规律是探索费时费心,在课堂上匆匆而过,反而显得对学生不负责任。

面积的教学反思8

  昨晚看到了天空有风老师关于平行四边形面积计算练习课的课件,正好和我的进度吻合,今天上课借鉴了一把,感觉真好。

  练习题的设计非常实用,如计算面积的第2小题,已知一个底是8分米,另一个底是6分米,这个底上的高是4分米,解这道题学生要选择对应的底和高,6分米和4分米,8分米这个条件在计算面积时没有用到,要让学生明确,计算平行四边形的面积要用对应的底和高相乘。接下来,让学生算出8分米的底所对应的高,用刚刚计算过的面积÷底=高。解决问题的第2题:有甲、乙两个面积相等的平行四边形,乙平行四边形的底是10分米,高是底的一半。甲的高是2分米,它的底是多少分米?这种变式练习,很有必要,学生先求出乙的高,然后底×高=面积,再用面积÷底(8分米)=高。解决问题的第3题:一块底边长24米,高10米的平行四边形地面要贴瓷砖,每平方米需要贴6块瓷砖,这块地面一共需要多少块瓷砖?和第4题:一个平行四边形停车场,底是63米,高是25米,平均每辆车占地15平方米,这个停车场可停多少辆车?这学生通过对比,知道求了面积之后,什么情况用乘法?什么情况用除法计算。最后的.考一考和比一比,通过观察对比、分析得出:周长相等的平行四边形和长方形,长方形的面积大;面积相等的平行四边形和长方形,平行四边形的周长的。

面积的教学反思9

  学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

  根据以前的经验,也总是通过实例,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积。

  总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念。

  概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环,通过观察或量一量圆环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆。

  第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操作也有课件濱示,还有练习,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积。

  学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的`求出圆环的面积。

  但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

  通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。

面积的教学反思10

  本课是在具体的情境中,引导学生通过独立的观察、操作、估计和直观的推理等活动,认识面积的含义,理解面积指的是物体表面的大小,在实际的“摸一摸”活动中,让学生体会面积与周长含义的不同,为下面几节课做好了铺垫。在练习中,我要求学生比较给出的平面图形面积的大小和自己画出的平面图形面积的大小,重视启发学生运用不同的手段和方法进行比较。通过比较,丰富学生对面积概念的理解,使学生体会了计量面积最基本的方法,即用相同的单位计量。

  在教学时,不能把眼光仅仅放在课本上,而是应在把握、分析、钻研课本的基础上,考虑学生的实际情况,对课本进行再加工、整合,创造性地使用课本,使课本变成适合学生学习的`材料。在让学生认识什么是物体的面积时,我没有简单地出示书上的两幅画让学生观察,而是先让学生观察老师是如何用手摸的、摸的是一个物体的什么地方,从而使学生产生想亲自动手试一试、摸一摸的好奇心,然后在我的引导下,由学生按照自己的方法去找一找。学生在系统的摸、说、找的过程中,不仅加深了对知识的理解,而且也初步感知了学习数学的一种方法。

面积的教学反思11

  本节课教学中,我采用通过“回忆整理——构建网络——综合应用——拓展提高”四个环节的教学,让学生通过回忆、观察、思考、实践等,在自主探索和合作交流中理清旧知识、练习巩固并拓展提升,从而提高学生自主学习和解决问题的能力。

  一、创设生活情境,探究“转化”思想。

  这一环节,我充分利用现代信息技术,把生活实景与虚拟动画相结合,通过长方形、平行四边形、三角形、梯形的动态画面,以新颖的设计吸引学生的注意力,点燃学生的求知欲望。

  二、通过综合练习,构建知识网络。

  复习课的练习题在于精而不在于多,在于题目的思维含量,而不在于盲目地为练习而练习。根据小学生“形象思维活跃,好胜心强”这一特点,我在每一阶段的练习都创设一个问题情境,而且把这三个情境以“游玩数学乐园”为主线贯穿起来,其目的.是:利用生动的故事情节,让枯燥的练习变得生动有趣,消减学生的疲惫心理,从而改善了复习课堂的结构;有效构建知识网络。

  三、利用分享练习,促进思维拓展。

  利用知识之间的紧密联系,在学生对平面几何图形面积公式的网络形成之后,及时抓住时机,引导学生进一步观察、想象、研讨,进一步理解各个图形之间、面积公式之间的内在联系,进一步激发学生的创新精神。

面积的教学反思12

  在今后的教学中能逐步改进,日趋完善,使自己不断走向成熟。圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

  弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。因此,我在认识圆环的设计中安排了经历剪圆环的动手操作过程。剪切的设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。由于学生体验了剪环形的整个过程,所以在我提出怎样求环形的面积时,学生能很快说出“大圆的面积—小圆的面积=环形的.面积”。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。

  环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念“环宽”,让学生在环形图中认识了“环宽”。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。

  虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来“做数学”确实能够增进学生对知识的理解和掌握。

  例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,分析验证,比较计算方法,归纳并优化计算公式。

  练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、 “环宽”,练习时除了设计基础的练习与判断题还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

  不足之处:

  1、练习题没能全部完成,导致没有实现练习的层次性。

  其实,我准备了不同的有关环形的练习题,由于在刚开始时为了照顾到大多数学生的学习程度,动手操作的时间给的充足,所以到练习题时时间不充分。设计的一道求半环形面积和一道拓展题没完成。

  2、知识点拓展的深度不够。

  在认识圆环特征的时候提出了一个概念:“环宽”,只是让学生在圆环上指出了“环宽‘‘但没有让学生将环宽与大半径、小半径进行对比,从而得出了它们之间的联系与区别,(大半径与小半径都是从圆心到圆上的线段;而环宽是小圆上到大圆上的距离,表示环形的宽度。R-环宽=r r+环宽=R)为今后做题提供很好的保障

  这节课有许多欣喜的地方,也有令我遗憾的地方。但不遗憾的是我从中发现了自身的缺点,使自己在今后的教学中能逐步改进,日趋完善,使自己不断走向成熟。

面积的教学反思13

  《圆》的教学是小学数学教学的重要组成部分,而圆的面积又是其教学中的重点和难点,它是后面要学习的圆柱和圆锥的基础,其重要性不言而喻。学习本节内容的知识基础是圆的认识以及长方形、平行四边形、三角形、梯形等平面图形面积的推导过程。转化的数学思想是学习本节内容的策略和学习手段。

  在学习“圆的面积”公式推导时,我让学生先说说以前学过的平面图形面积推导的过程与方法,进一步渗透“转化”的`教学思想,让学生猜想:圆也是平面图形,能不能用转化法,把它转化成以前学过的图形推导出来呢?然后让学生看书,引导动手操作:先把圆平均分成2个半圆,把每个半圆平均分成若干份,展开,交错拼在一起,观察拼成了什么图形?(近似的长方形。)课件演示:再把半圆分成更多等份拼在一起。学生发现:分的份数越多,拼在一起就越接近长方形。然后学生观察思考:通过这样拼,什么变了?什么没变?拼成后长方形和原来的圆有什么关系?

  学生明确了:它们的面积相等,长方形的长=圆周长的一半,宽=圆半径,进而推导出圆的面积计算公式。通过这样的剪、拼、验证,把圆转化成已学过的平面图形(长方形),从而推导出了圆的面积计算公式。通过这一学习过程,学生不仅获取了新知,更提高了学习能力。

面积的教学反思14

  今天教学了《面积单位》一课,这节课是在学生初步认识面积的基础上进行教学的。学好这部分知识,为以后学习长方形和正方形的面积及其他平面图形的面积提供了思维基础。

  数学课程标准指出:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面取得进步和发展。” 为了体现这一理念,本节课,我通过联系学生生活实际的情境引入,到关注学生的主体参与,在教学时注重展现概念的生成过程,不仅让学生学习数学的一些现成结果,还让学生经历数学知识形成的过程。一节课下来,收获很多,现把自己的所思所想写下来。

  1、联系生活、创设情景,激发学生参与意识。

  数学课程标准十分强调数学与现实生活的联系,指出“数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会”。这节课的教学中,为了给学生建立1平方分米、1平方厘米的表象,我让学生找找自己身边哪个物体的表面的面积是1平方分米,身体哪个部位的面积大约是1平方厘米,这些材料都是生活中显而易见,这样的教学设计,激发了学习学习的积极性,学生的反馈热情空前高涨,他们学习、探索知识的积极性被调动起来,答案层出不穷。学生不仅在脑海里建立了面积单位的表象,而且再一次巩固了面积的概念。这样的学习紧密联系了学生的生活实际,体现了数学源于生活。

  2、关注学生主体地位,让学生在不断探索,交流中构建知识。

  1平方厘米的教学,我采用有效引导的教学方式,让学生拿出学具中的小正方形,引导学生认识边长是1厘米的正方形,面积是1平方厘米。并让学生联系生活实际,说说哪些物体的表面的面积大约是1平方厘米,计量哪些物体表面的面积时可以用平方厘米。

  通过平方厘米的教学,我引导学生从平方厘米的名称中,通过个人独立思考、小组讨论交流创造出平方分米、平方厘米等面积单位,并类推出它们的意义。这样教学是一个大胆的实践,运用相关旧知去促进新知的学习,所有学生都主动参与到了学习过程中,在这一主动探究的.过程中,不仅培养了学生的创造能力,而且培养了学生从感性到理性的积极迁移的学习能力。

  在教学中,我们应该注重引导学生经历应用数学分析问题、解决问题的过程,积累数学活动的经验,在解决实际问题中享受成功的乐趣。本课中,我设计了“选择合适的面积单位测量你感兴趣的物体表面的面积”这一开放性活动。孩子们对这个活动充满了兴趣,他们不仅会选择合适的面积单位,还会主动和他人合作,从中掌握了测量的技巧。

  下课了,我的心情难以平静。我还沉浸在孩子们兴奋、快乐的活动中,课堂上他们高举小手、活跃激动的表情让我难忘。我在思考如何上好数学课,尤其是怎样体现“做数学”、 如何尽可能使每个活动更充分、有效。这些都值得自己要好好的思考。

  我想,每一位教师都应在充分了解学生的学习起点的基础上,结合新课标,课堂上,多给学生一些思考的时间,多给学生一些自主活动的空间,多给学生一些表现自己的机会,让学生增添更多探索成功的喜悦!这样的教学才是扎实有效的教学!

面积的教学反思15

  本节课的重点是推导和理解平行四边形的面积公式,平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。对学生学习推导三角形、梯形面积公式以及今后学习具有重要意义。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。

  在设计教学过程时,我注意了以下几点:

  1、以复习长方形面积公式引入新课。(“转化”的起点)

  2、让学生通过课前预习活动,思考例1,引导学生形成两个方面的体验:一是有些不熟悉、较复杂的图形,可以转化成熟悉的、较简单的图形;二是转化后要便于比较相关图形的面积,让学生形成初步的转化意识。在设计过程中,我将例2做了变化,用问题情境形式展示出来,并和例1联系,将平行四边形的面积与长方形面积进行比较,明确转化的方向。

  3、动手实践,完成转化。让学生通过剪、移、拼等操作活动,完成平行四边形到长方形的转化。此时,要让学生明确“沿高剪开”的必要性。(转化的关键)

  4、引导学生通过比较分析,得出平行四边形面积的计算公式后,再现公式的推导过程,并进行小结,同时启发学生去感悟平移和转化的数学思想方法。(进一步落实数学思考目标)

  这教学过程中,我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的'长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

  5、保证课堂练习的质量和时间,以使学生牢记和熟用公式。学生通过亲历这个过程,不仅能够牢固掌握并熟练运用S=ah这个公式,而且对平移和转化的数学思想方法有了初步体验,在数学思维和学习方法上进行了一次有效的积累,感受了成功的快乐,增强了学习的兴趣和信心。

【面积的教学反思】相关文章:

面积的含义教学反思 04-22

《梯形的面积》教学反思04-14

圆的面积教学反思04-12

组合图形的面积教学反思03-27

《长方形的面积》教学反思03-28

《圆环面积的计算》教学反思04-14

圆柱的表面积教学反思04-14

《多边形的面积》的教学反思01-21

长方体的表面积教学反思04-11

《圆柱的表面积》教学反思(15篇)04-14