《圆的面积》的教学设计
作为一名默默奉献的教育工作者,就难以避免地要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。教学设计应该怎么写才好呢?下面是小编精心整理的《圆的面积》的教学设计,希望能够帮助到大家。
《圆的面积》的教学设计1
课题:
“圆的面积”教学设计
教学内容:
义务教育课程标准实验教科书六年级上册第五单元“圆的面积”。
教学内容分析:
当前,“数学新课程实施应以学生数学素质的养成为核心目标,课堂教学中学经验的获得是学生数学素质养成的必要条件”已经成为大家的共识。《标准(20xx版)》的作者出:数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中透步积累的。“圆的面积”公式推导,从解决实际问题出发,引导学生用转化的方法把圆转化为长方形来计算面积。这样的过程,能够让学生深刻地体验到“化曲为直”的转化思想和“无限逼近”的极限思想。例3更是提供了一次探索问题解决方法的机会,使学生进一步提高解决问题能力。
圆的面积研究,以计算圆形草坪的面积作为情境自然引入;光盘、环岛、古建筑中的“外方内圆” “外圆内方”、土楼的占地面积、篮球场的三分线大量的生活素材,能有效激发学生的学习热情,促使学生积极主动地去探索知识。同时,通过对这些实际问题的解决,学生也能更真切地体会数学知识的广泛应用。
教学对象分析:
该节课内容是专门针对正迈入小学六年级的学生来展开的,从我多年的教学经验中可以了解到,处于该阶段的很多学生对新知识的接受程度较高,因此我认为这节课对他们来说教学难度不是很大,如果在课堂上能够紧跟着老师的教学思路一起探索、一起学习,定能有所收获。
1、学生的知识基础
该教学内容是学会计算圆的面积。在此基础上,该年级段的学生已经学习了如何辨别圆形、计算圆的周长,指导圆的半径、直径怎么表示,也明白“π”的含义以及其数值。小学六年级是小学阶段最后一年,也是他们在小学校园呆的最后一年,相比于其他低年级的小学生们,他们不仅在年龄上有所增长,而且在知识掌握程度方面也较全面,同时也更加地深入。
2、对学习该内容的.困惑与迷思
学生会对“π”的来源以及它的数值具体含义了解不是很清楚,还有存在对“圆”面积公式的疑惑,它是怎样从长方形的角度推向圆的形状的。部分学生存在逻辑感不强,对推导的过程不能做到知根知底,举一反三能力较差。
教学目标:
本节课程的教学设计主要分为以下三个方面:即教学的认知目标、教学方法目标以及教学过程中的情感目标。
1、教学的认知目标
让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。
2、教学方法目标
让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。
3、情感目标
让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。
教学重点难点:
重点:圆的面积计算公式的推导和应用。
难点:圆的面积推导过程中,极限思想(化曲为直)的理解。
教学准备:
PPT课件、圆规、教学模具、纸张、作业本、尺子、剪刀
教学的基本思路(或流程)
教学过程:
一、从旧知到新知,引入新课
根据人教版数学教材中的实例,开展新课堂。
1、课前回忆圆周长的计算公式
(1)在一道题目中,已经知道圆的半径r的数值,怎样计算圆的周长C?
(2)在一道题目中,已经知道半圆的直径R或者四分之一圆的半径r,应该怎样计算这些圆的周长C?
2、明确圆的面积的相关定义:
学习过程1:老师可以拿出课前准备的纸张,用圆规在纸面上画2个大小不一的平面圆,并拿出剪刀进行相应的裁剪。老师:这是两个一样的圆吗?他们一样大吗?
学生:不一样大,一个大、一个小。
老师:你们是怎么判断的呢?
学生A:用眼睛看,它们明显不一样大小。
学生B:把它们重叠在一起比较,哪个大就说明哪个是大圆,哪个是小圆。
老师:在生活中我们凭借着肉眼来辨别这些东西的大小,那么在数学上我们是怎样判别他们的呢?这时我们伟大的数学家们就引入了一个“圆的面积”的概念,通过计算他们的面积大小来确定其大小。
学习过程2:理清“圆的周长”和“圆的面积”之间的区别
老师要用标准的圆形教具,动手指出圆周长和圆面积之间的区别。理清之后,归纳两者之间定义的不同,即圆的周长是指构成圆一周的密闭曲线的长度,而圆的面积是指某个圆占平面的大小。
二、巧用游戏化形式,辅助学生理解
学习过程1:老师使用PPT课件展示问题:一个4厘米的正方形和一个半径r为4厘米的圆形,怎么比较它们的面积大小。鼓励同学们发挥自身的想象力,对圆面积的大小进行猜想,在讨论后,老师展示结果。在此过程中(老师所呈现的PPT有猜想过程)得出,该圆面积比4个同边长的正方形比较要小,而比3个同边长的正方形要大。老师:可见,圆的面积的大小无法直接用正方形来衡量计算。
学习过程2:老师带领学生们回忆其他几何平面图形面积(如:三角形、平行四边形、长方形等)的计算方法。老师同步PPT的内容,唤起学生们的记忆,即我们在计算一个新的平面几何图形的时候,往往会采取分割、拼接、补全等方法将其转化为熟悉的图形,开展运算,也就是化难为易。
三、教师引领,带领学生一起推导圆面积公式
学习过程1:探索拼接成的长方形和圆之间的关系。
首先,老师提出问题:拼接而成的长方形和圆之间的什么联系呢?鼓励同学们开动自己的脑筋,进行思考。思考完毕,可以邀请几位同学进行回答,最后老师进行总结(展示PPT相关内容)
圆的半径≈长方形的宽
学习过程2:寻求其他推导方法
开展小组讨论(4人为一学习小组):运用转化思想,来求圆的面积。讨论完毕后,小组成员可以派代表进行讲解,此过程有利于提高学生之间的合作和表达能力。
四、实战练习,提高解题效率
自主完成课后习题,明天上课前小组组长要汇报作业情况。同时也不布置一些作业,如下:
计算下列圆的面积和周长(1)已知某圆r=3cm,求S和C(2)已知r=5cm,求S和C
《圆的面积》的教学设计2
教学内容:
新人教版数学六年级上册第67—68页,圆的面积。
教学目标:
1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。
2、经历圆的面积计算公式的推导过程,体会转化的思想方法。
3、培养认真观察的习惯和自主探究、合作交流的能力。
教学重难点:
1、运用圆的面积计算公式解决实际问题。
2、理解圆的面积计算公式的推导过程。
教学准备:多媒体课件
教学方法:自主探究,合作交流
教学过程:
一、小测验:
1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。
2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。
二、问题引入
1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?
2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)
3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)
三、探索新知
(一)复习,平面图形面积的计算方法。
(二)探索圆面积的计算方法
1、我们一起来推导圆的面积公式吧!
2、利用多媒体课件展示圆的面积公式的推导过程。
(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。
(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。
3、在图形的拼凑与转化中,同时观察与思考以下问题。
a、拼凑中,圆在转化成什么图形?
b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?
4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)
因为长方形的`面积=(长×宽),所以圆的面积=(πr×r)=(r2)
如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2
5、学生齐读公式
S= πr2
教师强调r2= r × r(表示2个r相乘)
(三)应用公式
一个圆的半径是4厘米。它的面积是多少平方厘米?
思考:
1、本题已知什么,要求什么?已知圆的半径,求圆的面积。
2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,
3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。
例
1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?
2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。
3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。
4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。
(四)知识应用
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。
课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。
2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。
3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。
四、课堂总结:这节课,你有哪些收获?
说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。
五、作业布置:
教材第71页,练习十五,第1题~第4题。
《圆的面积》的教学设计3
一、学习目标:
1、通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能利用公式进行简单的面积计算,会解决简单的实际问题。
3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
重点:
圆的面积公式的推导及应用公式计算。
难点:
圆面积公式的推导过程。
二、教学准备:
教学课件
分成不同等份的圆形卡纸、纸板、胶棒
三、教学过程:
(一)、复习铺垫,导入新课:
1、看到老师手中的圆,你能想到有关圆的什么知识?
学生汇报。
2、你们还想知道圆的什么知识?
学生交流。
3、那你知道什么是圆的面积吗?
学习圆的面积的概念。
请学生到台前比划比划。
4、你已经会计算哪些平面图形的面积了?打开练习本写一写。
全班反馈。
师课件出示图形及公式。
5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。
学生汇报交流,教师课件演示。
回忆平行四边形面积计算公式的推导过程。
高宽
6、总结方法:这些图形面积公式的推导过程有什么共同点?
预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。
师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?
师板书:转化法
(二)、利用转化,推导公式:
1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
学生操作。
2、师:谁能告诉老师你们小组把圆转化成了什么图形?
生到台前展示。
预设:生1:我们小组把圆转化成一个近似的长方形。生2:我们小组把圆转化成一个近似的平行四边形。
师:大家真了不起!通过动手操作把圆转化成了这么多近似的图形。
师板书:操作法
3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?
预设:生1:平均分的份数越多,拼成的图形越接近于长方形。
生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。
(1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?
(2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?
(3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?
小组同学之间互相说说推导过程。
5、全班演示、汇报:
学生到台前演示交流。
(1)把圆16等分拼成近似的平行四边形。
(2)把圆32等分拼成近似的长方形。
(=(r)
①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。
②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。
教师课件演示。组织学生进行语言表述。
(三)、认真练习,巩固新知:
1、师:计算圆的面积一定要有什么条件?学生交流。
2、课件出示练习题:
(1)求下面各圆的面积。
r= 3厘米
d= 2分米
C= 12。56米
(2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)
(3)圆形花坛的直径20m,它的面积是多少平方米?
拓展练习:
一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。
(1)这头奶牛最多可吃掉多大面积的草?
(2)奶牛吃不到的草坪的面积有多大?
四、板书设计:
学习方法:
转化法
长方形面积=长×宽
操作法↓ ↓
圆的面积=圆的周长的一半×圆的`半径
化曲为直S = πr × r
平行四边形面积=底×高
↓ ↓
圆的面积=圆的周长的一半×圆的半径
S = πr × r
五、教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。
(一)、重视自主探究,促进合作交流。
让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
(二)、运用多媒体手段,激发学生学习兴趣。
在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。
(三)、练习设计适当,由浅入深地巩固新知。
课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
《圆的面积》的教学设计4
【教学内容】
义务教育课程标准实验教科书第十一册P69~71例1、例2。
【教学目标】
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:
掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:
理解圆的面积计算公式的推导。
【教学准备】:
相应课件;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的大小是一个什么图形呀?
生:是一个圆形。
师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的.平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
3.求下面各圆的面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]
四、课堂作业。
1、教材P69页“做一做”第2小题。
2、判断题
让学生先判断,并讲一讲错误的原因。
3、填空题
复习圆的半径、直径、周长、面积之间的相互关系。
4、教材P70页练习十六第2小题。
5、完成课件练习(知道圆的周长求面积)
老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。
五、课堂总结
师:同学们,通过这节课的学习,你有什么收获?
六、布置作业
《圆的面积》的教学设计5
教学内容:
国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。
教学重点:
探索圆面积的计算
教学难点:
理解面积的意义,推导圆的面积计算公式
教学过程
一、导入新课。
(一)关于圆你已经知道了什么?你还想知道什么?
(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)
(三)你觉得圆的面积可能和什么有关?
(四)出示下图
(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2
和3r2的)关系。
(六)思考:圆的.面积应该怎样计算呢?对于这个问题你有些什么思考?
小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。
二、探索圆积的计算公式
(一)让学生试着将圆剪拼成长方形。
(二)阅读课本P104页
(三)让学生再操作
(四)课件演示
(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
(六)引导观察讨论:这个拼成的长方形和圆有什么关系?
(七)汇报讨论结果。
这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。
因为长方形面积=长×宽
所以圆的面积=πr×r=πr2
用S表示圆的面积,那么圆的面积计算公式就是:
S=πr2
(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)
(九)教学例9
1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?
2、让学生尝试解答。
3、集体评议
4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)
三、知识运用
(一)求出下列各个图形的面积。(P105页的练一练)
(二)根据下面所给的条件,求圆的面积。
1)半径2分米2)直径10厘米3)周长12.56
(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)
四、本课小结。
通过本课的学习你有什么收获?有什么体会?
《圆的面积》的教学设计6
教学内容
课本第143页例2;练一练第1~6题。
教材分析
这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的。周长。求圆面积的应用题。
学情分析
本班学生计算能力还可以,就是对应用题有一种害怕心理。
教学目标
进一步掌握圆面积公式,并能正确地计算圆面积。
能运用圆面积计算公式,正确地解决一些简单的实际问题。
教学重点
会熟练运用公式求圆面积。
教学难点
求出需要的条件,即圆的`半径。
教学准备
作业纸、课件。
教学过程
一、复习。
课件出示:
求下列各题中圆的半径。
C=6.28分米,r=?;(2)d=30厘米,r=?
C=15.7分米,r=?;(4)d=18.84厘米,r=?
、求下列各圆的面积。
r=2分米,S=?(2)d=6米,S=?
r=10厘米,S=?(4)d=3分米,S=?
只要求学生进行口头表述计算公式(不求计算结果)
二、学生活动:
要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。
运用学生事先准备的工具(细绳、直尺等)
三、交流
小组把作业纸上交,交流心得
姓名
准备工具
物体名称周长
半径
面积
四、巩固练习
练一练第1~6题。
《作业本》p73。
板书设计:
圆面积公式的应用
R=d÷2
R=c÷π÷2
S=πr
《圆的面积》的教学设计7
一、教材内容:
本节课内容是求圆的面积
二、教学目标:
知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、
能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
三、教学重点难点:
重点:圆的面积公式的推导过程以及圆的面积公式的应用。
难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的`接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。
四、教学流程
1、复习迁移,做好铺垫
师问:
(1)长方形面积公式
(2)平行四边形面积公式
师:平行四边形面积公式的求法是借住谁来推导出来的?
2、创设情景,引入课题
用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?
问题:
(1)小牛能够吃草的最大面积是一个什么图形?
(2)如何求圆的面积呢?
3、师生互动,探索新知
(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?
(2)让学生动手操作:
教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。
(3)让学生转化的过程进行展示。(略)(多组学生展示)
(4)用多媒体进行验证。
让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。
师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。
(5)引导归纳:
思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?
思考2:长方形的长、宽与圆有什么关系呢?
再次多媒体展示动画。
师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,
即:圆的面积=长方形的面积=长×宽=πr×r
得到:s圆=πr×r
师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。
4、实际应用,强化新知
(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?
师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。
(2)出示例题:
例题1:已知一个圆的直径为24分米,求这个圆的面积?
a、让学生独立练习,b、指名板演,c、师生评议。
例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)
a、学生独立练习,b、指名板演,c、师生订正。
师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。
5、巩固练习,深化新知
1、判断题
(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()
(2)半径为2厘米的圆的周长与面积相等。()
2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。
3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少
6、课内总结,梳理新知
师:(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。
7、布置作业
《圆的面积》的教学设计8
目标预设:
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
教学过程:
一、引导估计,初步感知。
1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?
2、估计圆面积大小与半径的关系。
师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究
(1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
长方形的面积=长×宽
↓↓↓
圆的面积=∏rr
=∏r2
追问:课始我们的估算正确吗?
求圆的面积一般需要知道什么条件?
三、应用公式,解决问题
1、基本训练,练练应用公式,求圆的面积。
2、解决问题
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算
(3)交流,突出5平方的计算
四、巩固练习
1、练习十九1求课始出示的光盘的面积
2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?
五、这节课你有什么收获?你认为重点的
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)
六、课堂作业
补充习题51页2、3、4题
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
圆的面积是多少平方厘米?
反思:
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的.面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
《圆的面积》的教学设计9
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的'含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点: 圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
《圆的面积》的教学设计10
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用 学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。 教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
一、回顾旧知,引出新知
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法
二、创设情境,提出问题
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)
三、探究思考,解决问题
1、让学生估计圆的面积大小
(1)与同桌说一说你是怎么估的
(2)汇报,
(3)老师引导有没有更好的方法
2、探索圆面积公式
(1)学生操作
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公
式,并说出你的理由。
(6)总结:1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
四:实践应用
《圆的面积》教学反思
教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:
一、复习占用的时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的`宝贵时间。
二、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。
三、没给问题爆发的机会
在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?
《圆的面积》的教学设计11
一、教学目标:
1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
二、教学重点:
圆的面积公式的推导及应用公式计算。
三、教学难点:
圆面积公式的推导。
四、教学关键:
转化前后各部分间的对应关系。
教学过程
一、导入新课:
提出问题:
在一广阔草地上,用绳子拴着一只羊,可移动的绳长是10米,这只羊可活动的范围最大是多少平方米?
请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)
思考:
要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)
生读,教师板书:圆的面积
大家会求这只羊的活动范围吗?怎么求?下面我们就探讨这个公式的推导过程,大家想知道吗?
二、探索新知:
(一)、先自学课本,小组探讨如下两个问题:(电脑出示)
1、在推导的过程中你发现圆的什么变了?(板书:形状)
2、在推导的过程中你发现圆的什么没变?(板书;面积)
(二)、探讨第一问:
A:多媒体出示16等份圆。
1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。
2、学生小组操作。
3、你会把它变成一个近似长方形吗?学生小组尝试操作。
4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。
5、学生展示操作成果。
B:多媒体出示8等份圆。
1、请同学们猜想并且讨论:如果把同样一个圆平均分成8份,象上面这样拼,得到的图形谁更接近长方形?
2、学生汇报讨论结果。
3、媒体演示8等份。
C:多媒体出示32等份
1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。
2、眼睛微闭想一想。
3、媒体演示32等份。
D:多媒体演示三幅图综合画面。
1、让学生仔细观察后问:哪一等份更接近长方形?
2、为什么,等份的份数越多就能拼出越接近的长方形。
F:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想
学生讨论。
(三)探讨第二问:
A:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?
2、长方形的面积就是谁的面积?(教师板书)
3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)
板书:长方形面积=长×宽
圆的面积=圆周长的一半×半径
B:仔细观察多媒体演示问:
1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)
2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)
C:推导出圆的'面积并且用字母表示。(教师板书)
D:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?
三:课堂练习
1、同座互增一个画好半径的圆,求其面积。
问:先要知道什么条件,再怎样求?
2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?
3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何
解决此问题?
4、根据下面条件,求出各圆的面积。
C=6。28米r=1分米d=20毫米
5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。
课堂延伸
学生讨论:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的周长与圆的周长相等吗?为什么?
练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。
四、课堂小结
通过今天的学习,同座位互相谈一谈是怎样推导出圆面积计算公式的?知道哪些条件可以求出圆的面积?
《圆的面积》的教学设计12
教学目标:
结合具体情境,经历运用圆的面积公式解决实际问题的过程。
能灵活运用圆的面积公式解决生活中已知直径求面积的简单实际问题。
感受数学与生活的密切联系,培养学生的应用意识。
课前准备:一个直径30厘米的水桶。
教学过程:
一、创设情境
师生谈话,交流在什么地方见过什么形状的草坪。
师:同学们,随着社会和经济的发展,人们越来越注意美化环境,许多地方都种植了草坪,谁来说说你在什么地方见到过什么形状的草坪呢?
指名回答,给学生充分交流的机会。
二、草坪面积
教师口述问题,并板书出相关数据。
师:许多活动场所都有草坪,有些建筑前也有草坪,下面我们就来解决一个关于建草坪的问题。某公司要在办公大楼前建一个圆形草坪,计划草坪直径为11米。
板书:圆形草坪直径11米
提出书中的问题,让学生讨论一下:草皮和草坪面积的关系,再自己计算。师:现在的问题是需要多少平方米草皮呢?请大家先想一想:草皮和草坪的面积有什么关系?
生:草皮的面积就是这个圆形草坪的面积。
师:对,已知圆的半径求面积,大家已经比较熟悉了,那么知道了这个圆形草坪的直径,怎么求它的面积呢?请同学们试着算一算,得数保留整数。
学生试算,教师巡视,了解学生计算情况。
全班交流计算的过程和方法。注:如果有的学生分两步,先算出半径,再计算面积要给予肯定。列综合算式计算时,重点说明掌握()2的计算顺序。师:谁来说一说你是怎么算的,结果是多少?
生1:我先求出圆形草坪的半径11÷2=5.5(米),再用3.14×5.52≈95(平方米),需要约95平方米草皮。
教师板书:11÷2=5.5(米)
14×5.52≈95(平方米)
生2:我列的是综合算式,因为r=,圆的面积S=πr2,所以圆面积计算公式还可以写成S=π( )2,列式为3.14×()2=3.14×30.25≈95(平方米),需要约95平方米草皮。
如果学生没有出现第二种列式方法,教师参与交流,并特别说明。
师:同学们注意,在综合算式里的()2要先算小括号里的',求出商后再平方。边说边板书:3.14×()2=3.14×30.25≈95(平方米)
师:同学们利用圆面积公式解决草坪面积的问题。下面,我们再来解决一个实际问题。
三、水桶盖面积
教师拿出直径30厘米的水桶,先让学生猜测桶口的直径,再提出加木盖,以及木盖比桶口直径大10厘米的事情,提出计算水缸盖面积的问题,鼓励学生试算。
出示水桶。
师:这个水桶大家都非常熟悉,猜一猜这个水桶桶口的直径是多少?
学生猜,猜中给予表扬,猜不中,教师告诉,并板书出来:
水桶桶口直径30厘米。
师:现在要给这个水桶加一个大一点儿的木盖。木盖的直径比桶口的直径大10厘米。
板书:木盖直径大10厘米。
师:你们能算出这个木盖的面积吗?试一试!
学生试做,教师巡视,个别指导。
全班交流。重点说说计算的方法和结果。师:谁来说一说你是怎么算的,结果是多少?
生:先计算出木盖的直径,用30+10=40(厘米),再计算木盖的面积3.14×()2=3.14×202=3.14
×400=1256(平方厘米)
教师板书出算式。
四、归纳整理
让学生看90页的两个问题,并找一找有什么共同点?
师:请同学们打开书90页,课本上的两个问题,就是我们刚才解决的问题。自己读一读,看一看,这两个问题有什么共同点?
学生读书。
分别讨论:两个问题有什么共同点?已知直径求圆的面积,先算什么,再怎样计算?使学生知道:要先算出半径,再用圆面积公式计算圆的面积。师:谁来说一说这两个问题有什么共同点?
学生可能会说:
都利用圆的面积公式计算。
都是已知直径求面积。
都要先算出半径,再求面积。
师:已知直径求面积,要先算什么,再怎样计算?
生:要先算出半径,再利用圆面积公式计算。
五、课堂练习
“练一练”第1题,让学生独立完成。
师:看来同学们已经掌握了已知直径求圆面积的计算方法。下面我们打开课本第91页,看“练一练”中的第1题,自己读题,并解答。
学生独立完成,教师巡视。
师:谁来说一说你的做法,这个标志牌的面积是多少?
生1:我先求出这个标志牌的半径40÷2=20(厘米),再计算标志牌的面积:3.14×202=1256(平方厘米)
生2:我是用综合算式计算的。标志牌的面积是3.14×()2=1256(平方厘米)
“练一练”第2、3题,让学生自主计算,然后全班订正。师:我们继续看第2题。自己计算的几个圆的面积。看谁计算的都正确。
师:第3题是三个不同直径的圆,请同学们计算出它们的面积。
学生算完后,交流。
练一练第4题,课外实践性作业。师:第4题,请同学们回家后,测量、计算并填表。
《圆的面积》的教学设计13
一、教材分析
《圆的面积》,是北师大版六年制小学数学第十一册第一单元中的内容,这是一节推导与计算相结合来研究几何形体的教学内容,它是在学生学习了平面图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识作了铺垫。
二、学情分析
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题,因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
三、教学目标(课件)
(1)理解圆的面积含义,推导出圆面积计算的公式,并会用公式计算圆的面积。
(2)进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。
(3)注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。
基于以上的教学目标确定教学重点:掌握圆面积的计算公式;弄清拼成的图形各部分与原来圆的关系。
教学难点:是圆面积计算公式的推导和极限思想的渗透;
四、学情分析
为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:
1、知识呈现生活化。以草坪中间的自动喷灌龙头为草坪喷水为主线,让学生提出问题让生活数学这一条主线贯穿于课的始终。
2、学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。
3、学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。
4、学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
五、教学过程
本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。
(一)创设情境,激趣引入
数学来源于生活,有趣的生活情境,能激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了自身,又大胆而自然地提出猜想。在课的一开始,我设计了“自动喷水头浇灌草地得出一个半径是5米的圆”这一情境(课件),让学生在情境中寻找有用的数学信息并提出数学问题(课件),在思考“喷水头转动一周可以浇灌多大面积”的过程中,让学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,并引发研究圆的面积的兴趣,为下一环节做好铺垫。
(二)引导探究,构建模型
第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向————化曲为直,扫清障碍————实验探究,推导公式————展示成果,体验成功————首尾呼应,巩固新知五大步进行:
第一步:启发猜想,明确方向。
鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想(课件):“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,或许能想到将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的.限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。
第二步:化曲为直,扫清障碍。
首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段(课件)。这一规律的发现,不仅向学生渗透了极限的思想,更重要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。
第三步:实验探究,推导公式。
首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。
第四步:展示成果,体验成功。
在学生小组讨论后,引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似的平行四边形或长方形或三角形或梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。
(课件)首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导(课件),得出圆面积等于周长的一半乘半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。
第五步:首尾呼应,巩固新知
在学生获得圆的面积计算公式后,“龙头最多能喷灌多大草坪呢”?求出它的面积。从而达到了对新知的巩固。
四、分层训练,拓展思维
为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。
第一层:基本性练习
1、求下面各个圆的面积。(课件出示)
(1)半径为3分米;
(2)直径为10米。
(3)周长为13厘米。
第二层:综合性练习
2、一张圆桌的桌面直径是1。5米,油漆师傅要在圆桌面的边上贴一圈铝合金,并在正面漆上油漆。请问,油漆师傅要买多长的铝合金,油漆的面积有多大?
第三层:发展性练习
3、王大伯想用31。4米长的铁丝在后院围一个菜园,要使面积大一些,该围成正方形好还是圆形好呢?你能当回小参谋吗?
4、一块正方形草坪,边长10米.草坪中间的自动喷灌龙头的射程是5米。
(1)这个龙头最多可喷灌多大面积的草坪?
(2)喷灌后至少可剩下的面积有多大?
六、评价和反思
这节课紧紧抓住了教学重点,通过多媒体课件的演示,以及学生的动手操作,把一个圆通过分、剪、拼等过程,转化为一个近似的长方形,从中发现圆和拼成的长方形的联系,这种从多角度思考的教学理念,既沟通了新旧知识的联系,又激发了学生的求知欲,并培养了学生探索问题的能力。
《圆的面积》的教学设计14
教学目标:
1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。
2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。
3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:能正确、熟练地进行圆周长和面积的计算。
教学难点:从探究活动过程中去发现圆与正方形之间的关系。
教学准备:课件,学具。
教学过程:
一、复习旧知,梳理体系
直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)
教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?
小组合作,让同学们把所学的知识整理一下,然后进行汇报。
汇报交流,课件出示相关内容。
(1)圆的认识:
圆心O:决定圆的位置;
直径d:决定圆的大小;
半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;
圆是轴对称图形,有无数条对称轴。
(2)圆的周长:
围成圆的曲线的长度叫圆的周长。
圆周率:周长与直径的比,是个无限不循环小数。
圆周长的计算:。
(3)圆的面积:
由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。
圆面积计算:。
圆环的面积:。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的.有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
二、基本练习,整合知识
教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?
1.说说下面各题的最简整数比:
(1)一个圆的半径和直径的比是多少?(1:2)
(2)一个圆的周长和直径的比是多少?(:1)
(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)
周长的比是多少?(2:3)
面积的比是多少?(4:9)
【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。
2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)
(1)这个公园的围墙有多长?
教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)
(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)
(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)
(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)
【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。
三、探究学习,培养能力
1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)
(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)
(2)剪完圆后,哪张白铁皮剩下的废料多些?
教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)
(3)根据以上的计算,你发现了什么?
【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。
四、回顾总结,交流收获
教师:说说这节课我们学习了什么?你有什么收获或问题?
【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。
《圆的面积》的教学设计15
一、教学目标
1、知识与技能
(1)知道圆的面积公式推导过程;
(2)会用圆的面积公式计算圆的面积;
2、过程与方法
经历动手操作讨论等探索圆的面积公式的过程;
3、情感态度与价值观
积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数
学思想。
二、教学重点:
圆的面积的计算
三、教学难点:
推导圆的公式的过程;
教具准备:多媒体课件、圆片、胶水、剪刀
四、教学过程:
(一)、创设情境,导入新知
1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)
2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)
3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。
4、设疑:那么圆的面积怎样求呢?
5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。
6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?
(1)、设疑导入,激起学生学习的兴趣.
(2 )、复习渗透转化的'思想,为推导圆的面积埋下伏笔.
(二 )合作探究
把圆形转化成以前学过的图形探究圆的面积公式
师:同学们开动脑筋,小组合作看能把圆转化成什么图形?
(1) 学生动手操作;
(2) 交流演示各组拼出的图形。
(3)教师用课件演示。
教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=
问: 那么要求圆的面积必须知道什么条件?
(三)解决问题
(一)、已知圆的半径,求圆的面积
例1、一个圆形花坛的半径是3m,它的面积是多少平方米?
(二)、已知圆的直径,求圆的面积
例2、圆形花坛的直径的20 m,它的面积是多少平方米?
(三)、已知圆的周长,求圆的面积
例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?
四 巩固练习
1、判断对错:
(1)直径相等的两个圆,面积不一定相等。。 ( )
(2)两个圆的周长相等,面积也一定相等。 ( )
(3)圆的半径越大,圆所占的面积也越大。 ( )
2、根据下面所给的条件,求圆的面积。
(1)半径3分米
(2)直径20厘米
五、知识拓展
在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?
六、总结:学生谈收获
反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。
【《圆的面积》的教学设计】相关文章:
圆的面积教学设计09-19
圆的面积教学设计11-25
圆的面积教学设计方案12-14
圆的面积教学反思12-04
《圆的面积计算》教学反思06-03
六年级《圆的面积》教学设计12-01
《圆的面积》说课稿11-20
《面积》教学设计04-11
面积和面积单位教学设计12-27
《圆面积》教学设计12-15