小数的意义教学设计(集合15篇)
作为一名优秀的教育工作者,时常需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。教学设计应该怎么写呢?以下是小编为大家收集的小数的意义教学设计,希望对大家有所帮助。
小数的意义教学设计1
教学目标
1、进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题。
2、提高学生计算能力和估算能力。
3、培养学生认真计算、自觉检验的好习惯。
教学重点
正确、熟练地计算较复杂的小数乘法。
教学难点
根据小数乘法的意义正确判断积与被乘数的大小关系。
教学过程
一、检查复习
(一)口算
0.9×6
7×0.08
1.87×0
0.3×0.6
0.24×2
1.4×0.3
1.6×5
4×0.25
60×0.5
7.8×1
(二)说出下面各算式表示的意义
2.4×0.8
1.36×4
2.58×0.2
二、指导探索
(一)教学例3 0.056×0.15
1、学生独立计算,指名板演。
2、指名说一说计算过程。
教师提问:乘得的积的小数位数不够时,该怎么办?
3、指导学生验算方法
教师提问:怎样检验小数乘法计算是否正确?
(运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)
(二)教学例4
一个奶牛场八月份产奶18.5吨。九月份的产量是八月份的2.4倍。九月份产奶多少吨?
1、独立解答、
2、教师提问:
(1)你是根据什么列式的?(一倍数×倍数=几倍数)
(2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)
3、比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?
4、练习:不计算,说明下面各算式中积与被乘数的关系、
10.8×0.9
2.4×1.8
50×0.36
0.48×0.75
讨论:在什么情况下,积小于第一个因数?
在什么情况下,积等于第一个因数?
在什么情况下,积大于第一个因数?
5、小结:当第二个因数比1小时,积比第一个因数(零除外)小;
当第二个因数等于1时,积等于第一个因数(零除外);
当第二个因数比1大时,积比第一个因数(零除外)大;
6、练习:不计算,判断下面各题的结果是否正确、
0.72×0.15=1.08 0.36×1.8=0.648
三、质疑小结
(一)今天你都有什么收获?
(二)对于今天的`学习还有什么问题?
教学设计点评
教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。
小数的意义教学设计2
教学目标:
1、知识与技能:
①使学生了解小数的产生。
②理解小数的意义。
③掌握小数的计算单位及单位间的进率。
2、过程与方法:
①培养学生的动手操作能力及观察力。
②培养学生的抽象概括能力。
3、情感态度与价值观:
①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。
②渗透事物之间普遍联系的观点、实践第一的观点。
教学重点:
理解和抽象小数的意义。
教学难点:
抽象小数的意义。
教学过程
一、独立学习
1、把1米平均分成10份,每份是多少米?3份呢?
2、分母是10的分数可以写成几位小数?
3、把1米平均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?
4、思考什么是分数?什么是小数?
(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)
二、协作探究
(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。
(二)师生互探
1、解答各小组自学中遇到不会的问题。
(1)让学生提出不会的问题并解决。
(2)教师引导学生解决学生还遗留的问题。
2、交流小数的'意义。
(1)这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。
[学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥学生的积极主动性,使学生知道分母是100的分数可以写成两位小数]
(2)抽象、概括小数的意义。
把1米看成一个整体,如把一个整体平均分成10份、100份、1000份这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几、百分之几、千分之几这样的分数表示。
(3)什么叫小数?引导学生讨论。
(4)师生共同概括:
分母是10、100、1000的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几的数叫做小数。(投影出示)。小数是分数的另一种表现形式。
3、交流小数的计数单位。
三、达标训练
1、填空。
(1)是( )分之一,里有( )个。
(2)10个是( ),10个是( )。
(3) 写成小数是( ), 写成小数是( )。
2、课本做一做。
3、判断:
(1)里面有4个。 ( )
(2)35克=千克 ( )
4、把小数改写成分数。
四、堂清检测
(一)出示堂清检测题。
1、填空题。
(1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。
(2)小数点右边第二位是( ),计数单位是( )。
(3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。
(4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。
(5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。
2、读出下面各数。
3、写出下面各数。
零点一二 七点七零七 二十点零零零九
四千点六五 零点九一八 五十三点三五三
布置作业:教材P55页 1、2、3题。
板书设计:
小数的意义与读写
十分之一----------------
百分之一----------------
千分之一----------------
分母是10、100、1000的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几的数叫做小数。
小数的意义教学设计3
(一)教学目标:
1、知识技能目标:
通过本节课的学习,让学生理解小数的产生及其意义,掌握小数的读法与写法。使学生在现实的情境中,初步理解小数的含义,学会读、写小数,体会小数与分数的联系。
2、过程与方法:
培养学生观察、分析、交流、合作的意识,帮助学生建立起自我评价与反思的意识。
3、情感态度价值观:
使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心,激发学生学习数学的兴趣。
(二)教学重点、难点:
1、帮助学生通过自主探索和合作交流,理解小数的意义。这是本课的教学重点灺是本课的教学难点。
(三)教学时间:
1课时。
(四)教学准备:
1、多媒体。
2、课业本。
(五)教学过程:
一、创设情境,激发兴趣,揭示课题。
1、引入:
开学前他们去超市买东西,为开学做准备。(cai出示:书包89元,橡皮元,新华字典48元,信封元,水彩笔32元,本子元,文具盒元)
2、走进超市,东西可真多啊!你知道有哪些商品,它们的价格是多少吗?
学生介绍。
可能说出:元3角
元5分
元4角6分
元10元9角
3、你能把这些商品价格分分类吗?并说说你是怎样想的?
学生可能这样分:89元、48元、32元分为一类,因为这些都是整数;元、元、元、元分为一类,这些都是小数。
4、生活中,你在哪里见到过小数?
学生可能回答:超市里商品的价格,文具店里文具的价格,书店里书店价格。教师可以提示些不同的,如:学生的身高:米,视力表,瓶子上升……,同时配合板书。
5、教师小结:
原来生活中这么多的小数,今天这节课我们就一起进一步研究小数。
(板书课题:认识小数)
二、引导学生感知小数的含义。
1、小数的读法。
(1)(cai只剩下小数的价格)请生读一读这些小数。
(2)师:这些小数你们都会读了,我写一个你们会读吗?
师写:请生读。师:
这两个“48”的读法为什么不一样?想一想,小数的读法与整数读法有什么不同?
(3)小结小数的读法:整数部分按读整数的方法读,小数部分从左往右顺次读。
(4)读一读:。
2、认识两位小数表示百分之几。
(1)一位小数与十分之几。
①师:1角是1元的几分之一?是几分之一元?你是怎么想的?
生:1元=10角,元是1角,元=元。
师配合板书:1元=10角元(1角)=元
②师:那么元是几分之几元呢?
生可能回答:元是元,元是元。
师配合板书:元(3角)=元
③师:你说一个一位小数的价格,并请同学说说它是几分之几元?
汇报:男女生对出题,互相做答。
(2)两位小数与百分之几。
①师:元是几分之几元?
生独立思考后汇报,老师配合完成板书:
1元=100分元(1分)=元
元(5分)=元
②师:元是几分之几元?
同桌互说后请一生汇报。
③师:(将改为)元是几分之几元?你会说吗?
师配合回答完成板书:46分=元=元
④师:你出一个两位小数的价格,请同桌说出它是几分之几?
同桌互说后,请一组汇报,并板书记录。
(3)练一练第1题的第(1)小题。
①出题后生独立思考。
②请生汇报。
3、试一试。
(1)(cai出示尺子,并指着1厘米处)
①这是多长?
学生可能回答:1厘米。
②师:如果用“米”作单位,你能说出它的长度吗?
学生汇报,师配合板书:
1米=100厘米1厘米=米=米
(2)师在图中指2个整厘米的长度,请生用“米”作单位说一说?
(3)在书上完成试一试的题目。生汇报,进行核对。
(4)师:对着尺子你能用“米”作单位说出这些整厘米的长度,你能说出一个这尺子没有的整厘米数,并请同桌用“米”作单位说一说吗?
4、读一读黑板上的分数与小数。
三、帮助学生抽象出小数的意义。
1、例2。
(1)(cai出示第1幅图)师:这是一个正方形,我们用整数“1”表示。
(cai出示第2幅图)师:看一看,涂色部分占整体的几分之几?学生回答:涂色部分占整体的。
(cai出示第3幅图)涂色部分占整体的几分之几?学生回答:涂色部分占整体的。
(2)写成小数是(),写成小数是()。
(3)能分别说出空白部分用分数和小数怎样表示吗?
学生汇报。
2、试一试。
(1)(cai出示试一试)生独立审题后完成,同时“比较每组的分数和小数,有什么发现?”
(2)比较上面每组的分数和小数,你能发现什么?
学生可能回答:十分之几的分数可以用一位小数表示,百分这几的分数用两位小数表示。
(3)师:是不是这样呢?看看用这个方法能不能完成看p30练一练第2题。
再请学生说说改写的方法。
(4)出示:写成小数是多少?呢?你能写一写,读一读吗?
为什么在小数点后添“0”?
(5)请学生汇报改写的方法。
(6)板书:分数小数
十分之几一位
百分之几两位
千分之几三位
四、巩固练习。
1、p32练习五1
2、p32练习五2
(1)出示后请生读一读这些小数,后独立完成是课业本上。
(2)说一说,分母各是多少?
3、p32练习五3
(1)完成在课业本上。
(2)说出各是几位小数。
4、p32练习五4
(1)想一想,用几位小数表示。
(2)口答第2行的结果,第1行写在课业本上。
为什么在小数点与“2”点添“0”?
5、p32练习五5
(1)一生读题。
(2)同桌互相说一说。
(3)请一生汇报。
五、总结。
1、今天的课上你学会了什么?
2、在学习中得到哪些经验?
小数的意义教学设计2
教学要求:
1、使学生结合具体情境初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。
2、使学生进一步体会数学与生活的密切联系。
教学重、难点:能认、读、写小数部分是一位的`小数,知道小数各部分的名称。
教具学具准备:课件。
教学过程:
一、复习
7分米=()米3角=()元
9厘米=()分米1分=()角
二、新授
1、认识整数部分是0的小数
出示情境图:芳芳和明明在量桌面的长和宽,看看他们量的结果是多少?
(长5分米,宽4分米)
这是用分米做单位的,如果用米做单位,5分米是几分之几米?4分米呢?(板书)
师:十分之五米还可以写成0、5米,0、5读作零点五。
十分之四米还可以写成0、4米,0、4读作零点四。
(板书补充)
完整的板书:
5分米米0、5米读作:零点五米
4分米米0、4米读作:零点四米
书空:0、5 0、4
齐读:零点五、零点四
2、认识整数部分不是0的小数
出示情境图:
能不能像刚才那样,把几元几角写成以元做单位的数?
1元2角,想一想,2角是多少元?那么1元2角是多少元?(板书)
3元5角呢?(板书)
完整的板书:
1元2角1、2元读作:一点二元
3元5角3、5元读作:三点五元
书空,齐读。
3、认识整数、自然数、小数及小数各部分名称
师:我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,他们都是整数。像0、5、0、4、1、2、3、5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。
板书:
0、1、2、3自然数整数
05、 04、12、 35小数
整小小
数数数
部点部
分分
分别说一说0、4、1、2、3、5的整数部分和小数部分各是多少。
三、想想做做
1:仔细观察图意,说说题目的意思。
照样子填写。
说一说每组3个名数之间的联系和区别
2、3:独立练习。
4:先同桌互说,再全班交流。
5:为什么0右面第一个点上填0、1?1右面第二个点上1、2?
独立填写其他的小数。
教学后记:
学生说很简单,我可不敢掉以轻心,在小数这一块出问题的可多着呢。要不要说意义?
小数的意义教学设计3
教学目标:
1.进一步理解小数的含义。
2.学生认识单名数和复名数,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。
3.通过收集生活中的小数,体验生活中处处有数学。
教学重点:
使学生掌握单名数与复名数改写的方法,熟练的进行单名数与复名数改写。
教学难点:
熟练的进行时间单位单名数与复名数的改写。
教学过程:
一、引入新课
复习引入:
1千米=()米
1千克=()克
1米=()厘米
1吨=()千克
1时=()分
1分=()秒
1平方米=()平方分米
1平方分米=()平方厘米
在课前大家都收集了一些资料,把你收集到的生活中的小数说给小组同学听。
找一组同学汇报他们收集的数据。
二、新课学习
1、名数
老师也收集了一些生活中的小数,我们一起来看一看:课件出示。
糖果的质量是0、5千克,小明的身高是1、35米,小红体操得分是9、25分,小丽的体温是38、5度。
这些小数分别表示什么意思呢?你能说说自己收集的小数的含义吗?
在计量长度、面积、重量、时间时,得到的数都带有单位名称,如1米30厘米,125厘米,32千克,30、4千克……等.通常把量得的数和单位名称合起来叫做名数。
观察同学们说出的这些名数,有什么相同点和不同点?
相同点:都是测量的结果,有数有单位;
不同点:有的名数只带有一个单位名称,有的名数带有两个或两个以上的单位名称。
带有一个单位名称的名数,叫做单名数;带有两个或两个以上单位名称的叫做复名数。
大家能举出一些单名数和复名数的例子吗?
3分钟、7千米、6时15分、78平方米、4吨50千克、5米6分米、20平方厘米、9年、5千米60米。
2、例1
(1)80厘米=()米
引导学生观察:从这道算式中你发现了什么?
低级单位的名数能否转化为高级单位的名数呢?
应该怎样改写?学生汇报:说一说是怎样想的?
教师说明:因为100厘米=1米,80厘米=()米=0、80米,还可以这么算,80厘米=80÷100米=0、80米,其中的80÷100可以利用小数点移动的规律进行计算,缩小100倍也就是小数点向左移动2位,所以80÷100=0、80。
说一说你更喜欢哪种方法?
讨论:比较转化前后,什么变了,什么没变?
单位名称变了,数的大小变了,实际的多少没变。
让学生举出几个由低级单位转化为高级单位的例子。
归纳方法:用低级单位的数除以进率,商就是高级单位的数,余数就是低级单位的数。
练一练
(2)教师出示1米45厘米=()米
这道题与上面的题相比有什么不同?(是复名数改写成单名数)
引导学生讨论交流:怎样将复名数改写成单名数?你是怎样想的?
首先把1米45厘米写成1、
米,因为1米等于1米,所以1米再加45厘米就等于1、45米。还可以这么想,1米45厘米是145厘米,145÷100=1、45米。
练一练:
4千米180米=()千米
7米6厘米=()米
3、例2
0、95米=()厘米
可以怎样想?由高级单位名称改定成低级单位名称时,要用高级单位的数乘以进率,再加上低级单位的数.
想一想:1、32米=()厘米
可以这么想:1、32米=1米+0、32米=100厘米+32厘米=132厘米,还可以这么算:1、32米=1、32×100厘米=132厘米。
三、巩固练习
1.直接写出得数。
0、45×10=
1、6×100=
0、056×1000=
40、5÷100=
7、8÷1000=
0、7÷10=
3、06÷10=
3、06÷10=
2.小刚检查调查表时发现了许多错误,你能帮忙把错误改正过来吗?
张佳佳:
体重3、85千克
身高14、3米
早晨喝0、005千克牛奶。
四、课堂总结
1.这节课的学习内容是什么?
2.通过这节课的学习你有什么收获和体会?
3.还有什么疑问?
小数的意义教学设计4
教学内容:
国标苏教版第28~30页例1、例2及相应的“试一试”、“练一练”,练习五第1~5题。
教学目标:
1、在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3、初步养成善于观察、善于比较、善于交流等良好的学习习惯。
教学重点:
理解小数的意义。
教学过程:
一、交流信息,引入课题
1、在三年级时,我们认识了一些小数,你能说出几个吗?
2、课前大家已经收集了很多关于小数的资料,老师选择了一些比较有价值的,你可以轻轻地把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?
(1)一块橡皮元,一本练习本元。
(2)一张信封元。
(3)王琳的身高米,体重千克。
(4)刘翔在国际田径超级大奖赛中,以秒的成绩刷新世界记录。
(5)一枚1分硬币的厚度大约是米。
(6)人体的正常体温是°°C。
(7)“神舟六号”在太空飞行时距地球表面最远的高度大约是千米。
3、引入课题
这些信息中的数都是小数,用小数可以描述一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,想不想作进一步的的研究?你还想知道小数的哪些知识?
根据学生提出的问题揭示课题。
二、探究新知
1、学习小数的读法
小数怎么读?谁能把信息中的几个小数再读一读?
能发现小数是怎么读的吗?
让学生发现:小数点前面的数和我们学过的'整数一样读,小数点后面的数只要依次一个一个地读。
出示几个小数,让学生读一读:
2、探究小数的意义和写法
(1)如信息中的、、元这些小数是怎么来的?
小组内回忆6角写成元的过程。
那5分为什么可以写成元?同桌商量商量。
引导学生:元与分之间的进率是多少?1分是1元的1/100,是1/100元,可以写成元,那5分是1元的几分之几?是几分之几元?写成小数是多少元?
学生尝试说说7角5分转化为元的过程。
那6角8分可以写成几元?
(2)米是怎么产生的?谁能大胆地猜测一下?(教师出示米尺图)
引导学生说出:1厘米是1米的1/100,是1/100米,写成小数是米。
以小组为单位,在直尺上另外找出两个刻度,想一想,写成分数和小数各是多少?把它们写下来。
组织交流。
(3)猜一猜,把1米平均分成1000份,还会得到什么样的分数?如何写成小数?
把自己的猜想和小组里的同学交流交流,并试着把这些分数、小数写下来。
组织全班交流。
3、抽象概括:
仔细观察上面每组的分数和小数,你能发现什么?把你的发现在小组里和同学交流。
引导学生概括:通过刚才的学习,我们知道分母是10、100、1000……的分数,可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
以前我们学习了一位小数,今天又认识了两位小数和三位小数,还会有位数更多的小数吗?
4、教学“试一试”
先让学生独立完成,再组织交流,说说怎么想的。结合图来理解每个小数把整数“1”平均分成了几份,表示这样的几份。
三、练习拓展
1、把听到的小数记录下来。
早晨6点30分,小明从米宽的小床上起来,挤了米长的一段牙膏,用了小时刷牙洗脸,喝了一杯升的牛奶,吃了一只面包,背起千克的书包,飞快地向离家千米的学校跑去。
指名板演。读一读这几个小数,选择整数部分是零的小数说说它们表示几分之几。
2、最近学校附近开了一家文具店,但店里商品的标价不太规范,请你们帮个忙,把这些标价改成用“元”作单位的小数。(图略)
铅笔3角小刀8分直尺5角9分练习本76/100元
3、把你认为长度相同的找出来
4毫米米4/1000米米4厘米4分米4/10米
4、估价:一筒薯片的价格在5元~6元之间。
5、把课前收集的小数信息,挑一个用今天学到的知识介绍给同桌听。
四、课堂小结
今天,我们进一步认识了小数,你有哪些收获?
在我们的生活、生产中经常用到小数,课后围绕“生活中的小数”写一篇数学日记。
反思:
我总认为“小数的意义和读写”这一内容用传统的讲授法比较恰当,因为这些概念是约定束成的,而动手实践、自主探究等只能是一种形式上的追求。如何使传统教学与新理念融合在一起,达到比较完美的教学效果,本课进行了一点尝试。
1、以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。
课始,展示学生课前收集的小数信息,把小数的意义设置在一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式来表达对小数的理解。由于小数在生活中的普遍存在,学生已有一定的经验,因此,在教学小数的读法时,充分利用个别学生会读这一资源,让这部分学生大胆释放自己的学习能力和已有经验,通过他们的引读,让其他学生发现小数的读法。
2、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。
小数的意义是本课的教学重点,在抽象这个概念的过程中,通过旧知的迁移,尝试让学生自主探究、合作交流,把他们引入研究性学习的氛围,主动建构知识。如回忆了6角为什么能写成元后,让学生在小组里商量商量5分为什么可以写成元?在米尺上找两个整厘米数的刻度,把它们写成分数和小数;猜一猜,如果把1米平均分成1000份,会产生什么样的分数,又如何写成小数?在学生经历了这么多的探究、体验后,引导学生观察每组中的分数和小数,从而发现抽象出分数的意义。
3、在解决实际问题中巩固知识,让学生感受数学的魅力。
本课的练习安排,彻底改变了教材上的读读、写写、做做的模式,而是通过把听到的情境中的小数记录下来、改写商品标价、找相同的长度、估价、介绍收集的小数信息等形式,使知识得到巩固和拓展,让学生感受到数学的有趣、真实。
小数的意义教学设计5
教材简析:
教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。
教学目标:
1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。
2、培养学生的理解空间想象能力。
3、训练学生思维的灵活性。
教学重点与难点:
小数的意义及小数与分数的'联系。
教学准备:
多媒体课件
教学过程:
一、复习。
用分数表示下面的数。
1角=()元,1分米=()米。
2角=()元,1厘米=()米。
1分=()元,1毫米=()米。
二、教学例1。
1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。
指名回答问题。注意学生回答问题时要完整。
橡皮的单价0.3元是3角;信封的单价0.05元是5分;练习簿的单价0.48元是4角8分或48分。
(联系学生的已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)
2、教学小数的读法:
你能读出下面的小数吗?鼓励学生大胆尝试。
0.05读作:零点零五;0.48读作:零点四八。
引导学生总结读整数部分为0的小数的方法:
从左往右依次读出各位上的数。
3、初步感受两位小数的含义。
想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?
小组讨论交流。
汇报:0.3元是1元的十分之三。
(学生根据三年级的知识,完全可以回答出第一个问题。)
0.05元是1元的百分之五。提问:为什么:
(根据学生的回答情况,可以作如下的引导。)
思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.05元是5分,是5个,也就是1元的_____。
根据上面的思路,让学生说明0.48元是1元的。
学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.48元是48分,是48个,也就是1元的_____。
观察板书:
你发现了什么?
引导学生看到0.05和0.48都是两位小数,都表示百分之几。
4、“试一试”
A、理解:1厘米是米,米可以写成0.01米。
指名理解1厘米为什么是米。
(1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)
B、用米为单位的分数和小数分别表示4厘米与9厘米。
学生回答并说名理由。
C、观察板书:
这三个分数都是什么样的分数?(百分之几的分数)
这三个小数呢?(两位小数)
我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)
三、数形结合,建立小数的概念。
1、出示例2:
把什么看作“1”?(正方形)
看着图形将和写成小数。学生自主填空后回答。
提问:0.1表示什么?0.01又表示什么?
小数的意义教学设计6
教学内容:
小数的意义
教学目标:
1、理解小数在生活中产生的必要性。
2、经历探索小数意义的过程,了解小数在生活中的广泛应用。
3、在探索交流的学习过程中,体验数学学习的乐趣。
教学重点:两三位小数的意义。
教学难点:探究两三位数小数意义的过程。
教学准备:正方形卡纸
教学过程:
一、测量物体导入,了解小数的产生。
1、同学们,老师手中有一张四边形彩纸,你猜测一下它是什么图形?
2、那只是我们的猜测,怎样才能难我们猜测的结果呢?
生:用对折的方法(真善于思考)
师:还有其他方法吗?
生:测量
师:怎样测量。
生:四边长度是否相等。(用数据说话更有说服力)
师:同学们手中也有一张四边形彩纸,那我们就用刚才这名同学所说的测量四边长度的方法来验证一下它到底是什么图形。拿出尺子开始吧!把测量完的长度分别写在四边的括号里。(培养学生猜测、验证的数学思维)
师:同学们都量好了,谁来汇报一下你验证的结果。
生:是正方形,边长长度都是厘米。
师:是正方形吗?四条边的长度分别是多少厘米?我写在这好吗?
师:有和这名同学数据不同的吗?
师:怎么可能,大家都是正方形,你验证错了吧?
师:你真勇敢,在真理面前,不要向任何人低头。
师:观察这些数据你发现了什么?
生:有整数,也有小数。
师:同学们为什么会用到小数呢?
师:刚才我们在测量图形边长的时候因为长度不是整厘米数,所以我们用到了小数,在生活中还有哪些地方你也运用到了小数呢?
师:你们真是留心生活的孩子,老师这也搜集了一些,谁读给大家听。
课件出示很多情况。引出课题。(数学学习来源于生活实际。)
大家读得都很准确,在三年级我们对小数有了初步的认识,而在这一节课,我们要研究一下小数的意义。板书。
师:我今天也带来了几个小数,请大家注意看。
师:你们猜接下来老师要写哪个小数。
板书:
师:你们是怎么猜到的呢?
二、探究一位小数的意义
1、让我们来看这个小和0.1,它表示什么?
师:刚才我们进行验证的.那张正方形纸,我们把它看作是1,那这样的2张呢,10张呢?
师:如果想用这张纸表示出0.1这么大的一块,你估计一下能有多大呢?用手指给大家看。
师:这个0.1到底有多大呢,就用你手中的正方形纸画一画涂一涂表示出0.1那么大小的一块。
生:汇报。
师:现在谁能说说0.1所表示的意义?
生:把正方形平均分成十分,表示其中一份的数就是0.1也就是十分之一。
师:只能是正方形平均分吗?
师:所以0.1也就是十分之一。
师:仔细观察这个正方形,除了0.1你还看到了哪个小数。0.9也就是十分之九。
师:怎么得到的呢?
师:那么0.1和0.9合起来就是多少?
师:看这些小数,你发现了什么呢?
这些一位小数就是表示十分之几。
三、认识两位小数的意义。
1、如果要表示0.01那么大小的一块,你会吗?谁来说说你的想法。
生:把这个正方形平均分成100份。表示其中的一份。
师:你们认为是这样吗,谁再来说一说。
师:(教师演示这样的过程)
师:谁来说说0.01所表示的意义呢?表示百分之一。
师:你还看到了哪个小数呢?百分之九十九。
3、下面请同学们自己在有一百个格子的正方形上涂一涂,自己创造出一个小数来。
师:哪位同学说说你涂了几格,阴影部分用小数表示是多少?
师:你创造的小数是多少,猜猜他涂了多少个格子。那空白部分应该是多少呢?
4、用这一环节引出0.4和0.40。区分意义的不同。
这样的两位小数表示百分之几,在分法上不同,所表示的意义也是不同的。
四、认识三、四位小数的意义。
1、我们认识了一位小数表示十分之几,两位小数表示百分之几,那三位小数呢?四位小数呢?
师:0.001表示千分之一0.234表示千分之二百三十四
师:那千分之31写成小数是多少?
2、我想表示出一个很大的三位小数,你认为应该是多少?
4、它和谁合在一起才会是1呢?
五、巩固应用。
1、把一米长绳子分成10份,分别用小数分数表示其中的4份。
2、解释下面题中小数的意义。
周末天天去一个距家有0.3千米的超市买了一支铅笔用了0.3元,来回路程共用去了0.3小时。
0.3千米=()米0.3元=()角0.3小时=()分
小数的意义教学设计7
【学习内容】
小数的意义和产生,课本50—51页内容。
【学习目标】
1、我能通过观察知道小数的产生。
2、我能通过分析明白小数的意义。
3、我知道小数的计算单位及单位间的进率。
【学习重难点】
小数的意义和计算单位及进率
【学习流程】
一、知识链接
1/、谈话引入:
我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。
二、探究新知。
1、探究活动:
认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。
温馨提示:
(1)能你测量课桌的长度和宽度吗?测量时发现了什么?
(2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?
(3)、你能用小数表示分母是10的分数吗?
(4)、你能用小数表示分母是100的分数吗?
(5)、你能用小数表示分母是1000的分数吗?
(6)、什么是小数,小数的.计数单位是什么。
(7)、每相邻两个计数单位之间的进率是多少。
(8)、小数的计算单位和分数的计数单位有什么不同之处。
2、我会总结:
(1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
(2)、每相邻两个计数单位之间的进率是()。
3、解决问题:
(1)0.457,每个数位上的数各表示几个几分之一?
(2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()
三、课堂巩固:
1、判断:
(1)0.40里面有4个0.01()(2)35克=0.35千克()
2、把小数改写成分数
0.90.090.0359
3、括号里能填几?你是怎么知道的?
(1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。
(3)、找朋友:(用线把上下两组数连起来)
0.0450.130.00010.9
四、课堂总结:
这节课我们学习了什么?你知道了什么?你还有什么问题?
小数的意义教学设计8
教学目标:
1、理解小数的意义,借助熟悉的十进制关系现实原型,多角度理解小数和分数的联系,知道每相邻两个计数单位之间的进率是10。
2、通过小数和分数的联系,培养学生系统归纳知识的能力。
3、通过对测量、观察、思考、操作等活动,以及学生对日常生活中的小数的广泛应用,使学生积累了丰富的感性认识,渗透迁移、类推思想。
4、通过自学、交流等活动,积累思考的经验和探究的经验。
5、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。
6、引导学生在测量、操作过程中经历“不够1米怎么表示”,感受小数产生的必要性,并尝试着解决生活中的实际问题。通过分层练习,让学生牢固掌握并重点练习小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义,培养迁移和类推的能力。
教学重点:
1、理解小数的意义
2、知道每相邻的两个计数单位之间的进率是10。
教学难点:
小数每相邻两个计数单位间的进率是10。
教学过程:
一、情境引入,揭示课题
同学们,上学期我们初步认识了小数,了解到小数在生活中具有十分广泛的应用,生活中处处有小数,小数也经常出现在日常生活的测量和计算中。你会用米尺测量吗?请两位同学合作到前面测量黑板的长度。引出在测量过程中,往往不能正好得到整数结果,不够1m怎么办?
今天我们一起来探究小数的意义(板书:小数的意义)
二、新授
(一)1、理解一位小数的意义
请看大屏幕(出示课件米尺图)
师:把1米平均分成10份,其中的一份是几分米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?
师:谁来说一说?3分米呢?7分米呢?
通过探究,发现:分母是10的分数可以用一位小数表示。
师:0.3m里面有几个0.1m?
0.7m里面有几个0.1m?1m呢?
小结:分母是10的`分数,它的分子是几,里面就有几个0.1。
2、巩固练习(出示课件)
师:请你再思考一下:1里面有几个0.1?为什么?
(二)1、理解两位小数的意义
请看大屏幕(出示课件米尺图)
把1米平均分成100份,其中的一份是几厘米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?谁来说一说?4厘米呢?8厘米呢?
通过探究,发现:分母是100的分数可以用两位小数表示。
0.04m里面有几个0.01m?
0.08m里面有几个0.01m?1m呢?
小结:分母是100的分数,它的分子是几,里面就有几个0.01。
2、巩固练习(出示课件)
(三)1、理解三位小数的意义
请看大屏幕(出示课件米尺图)
把1米平均分成1000份,其中的一份是几毫米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?
谁来说一说?6毫米呢?13毫米呢?你能独立探究吗?
学生看课本33页,独立探究。(课件出示问题引导)
通过探究,发现:分母是1000的分数可以用三位小数表示。
0.006m里面有几个0.001m?
0.013m里面有几个0.001m?1m呢?
小结:分母是1000的分数,它的分子是几,里面就有几个0.001。
(四)迁移推理
同学们看课本33页,在米尺图的下面,小精灵说了一句话,咱们齐读一下。引导学生理解其中省略号的含义。
巩固练习:
1、教材36页 1、2两题
2、课件出示巩固练习
(五)认识小数的计数单位和进率
回忆整数的计数单位,引出小数的计数单位,理解每相邻两个计数单位之间的进率是10。
三、课堂总结:
这节课你有什么收获?
四、介绍小数的历史,拓展视野
五、布置作业:教材37页7、8两题。
小数的意义教学设计9
【教材分析】:
小数的性质是一节概念课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则运算的基础。小数的性质实质上是研究在什么情况下两个小数相等的,它与分数的基本性质是相通的,但由于学生还没有学过分数的基本性质,所以教材通过直观和学生所熟悉的十进复名数来进行教学。
【教学目标】:
1.理解和掌握小数的意义。
2.理解整数,分数,小数之间的联系,掌握相邻俩个计数单位间的进率。
过程与方法:
经历小数的发现,认识的过程,体验探究发现和迁移推理的学习方法。
情感态度与价值观:
了解数学知识的产生过程,激发学习兴趣,培养动手实践,合作探究的学习习惯。
【教学重点】:
理解和掌握小数的意义。
【教学难点】:
认识小数的计数单位并掌握它们之间的进率。
【教学方法】
教法:组织数学活动,引导学生思考。
教学准备:多媒体课件,投影仪。
【过程与方法】:
一.激趣导入,引出小数的产生。
师:同学们,最近我们学习简便运算,学习的过程有点枯燥,今天呢,我们在上课之前做个小游戏,游戏的名字叫做猜价格。老师手里有本课外书,谁能够猜对这本书的价格,老师就把这本书送给谁。给一点提示,这本书的价格在10-20之间。
生:猜价格的过程中。
师:那么老师还有一点问题要问问同学们,在这个价格中,19表示什么,8表示什么,0表示什么。
生:19表示19元,8表示8角,0表示0分。
师:回答的真好,这就是每个数字的含义,通过刚才这个小游戏,我们发现生活中,整数已经不能满足我们的需要了,所以我们还要对小数进行学习与理解,今天我们就学习第四章《小数的意义和性质》。那么对于小数,同学们你们想学习哪里知识呢?
生1:小数表示什么。
生2:小数的读法与写法。
生3:小数的性质。
生4:小数的比较大小。
师:同学们想了解的知识还真不少,今天我们就来学习小数的第一课,《小数的意义》(板书出示)
(设计意图:以一个小游戏来调动课上气氛,让学生了解整数已经不能满足生活中很多事物的价格,让学生发现小数的产生,以开放性的问题让孩子们畅所欲言,为更好的学习这节课做铺垫。)
二.探究新知,理解一位小数的意义。
师:在货币单位中,我们发现很多价格不能得到整数,这时我们常常需要小数来表示,那么在长度单位是不是也需要呢?我们一起来分析一下。(出示课件)
师:我们知道1米=(10)分米。
那么把1米长的尺子平均分成10份,每一份的长度是多少分米?能够用几种形式来表示?并指一指每一份所对应的位置。
师:用整数怎么表示?
生1:我可以用整数来表示,因为1米等于10分米,正好分成10份,每一份正好是1分米。
师:我们之前学习过分数,谁能用分数把这个数表示出来?你根据的是什么?
生2:我可以用分数来表示,把1米长的尺子平均分成10份,每一份正好是这个尺子的十分之一米。(根据分数的意义)
师:那么十分之一米能不能用小数来表示呢?
生3:我可以用小数表示,因为从刚才那个猜价格的游戏可以看出,3表示角,元和角之间的进率是10,可以用小数0.3元表示,那么尺子的一份是1分米,分米和米之间的进率也是10,所以可以用小数0.1米。(通过学生的预习很多同学能够说出0.1米,但是孩子们对于0.1米的理解还是有一定的问题的。)
师:回答的真好,我们发现1分米是整数,十分之一米是分数,0.1米是小数,同学们能不能帮老师列一个恒等式呢?
生:1分米=十分之一米=0.1米(板书出示)
师:你们发现这个等式有什么特点?
生:我发现整数,分数,小数它们之间可以互相转化。
师:那么把一米的尺子平均分成10份,分别取其中的3份和7份又该怎么表示呢?同位之间互相说一说。并指一指它们的具体位置。
生:3分米=十分之三米=0.3米
7分米=十分之七米=0.7米
师:我们一起观察这些等式,像0.1,0.3,0.7,0.8这样的小数它们有几位小数?
生:一位小数。
师:再认真观察这些小数对应的分数有什么共同特点?
生:分数的.分母都是10.
师:那么什么样的分数可以写成一位小数呢?
生:分母是10的分数,可以写成一位小数。
师:教师总结:一位小数我们可以用分母是10的分数来表示,表示十分之几,这就是一位小数的意义。
三.深入研究,理解俩位小数的意义。
师:同学们我们刚才把1米的尺子平均分成了10份,那么如果平均分成100份呢?结合刚才学习一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学习,看哪一组能在最短的时间内完成任务。(出示课件)
生1:1厘米。
生2:百分之一米。用小数0.01米表示。
生3:百分之三米,0.03米。百分之六米,0.06米。百分之十米,0.10米。
师:嗯,那么对于这些像0.01,0.03.0.06.0.10这样的小数,它们是几位小数?
生:俩位小数。
师:这些分数有什么共同的特点?
生:分母都是100的分数。
师:什么样的分数可以写成俩位小数?
生:分母是100的分数,可以写成俩位小数。
师:教师总结:俩位小数我们可以用分母是100的分数来表示,表示百分之几。这就是俩位小数的意义。
(设计意图:让学生根据一位小数表示十分之几,通过小组讨论自己解决俩位小数和什么样的分数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。)
四.探究三位小数的意义。
师:以猜想的形式来呈现,如果把1米的尺子,平均分成1000份,其中的一份或几份怎么用分数表示,又怎么用小数表示?你能举例说明你的表示方法吗?
生1:一份的,1毫米=千分之一米=0.001米。
生2:六份的,6毫米=千分之六米=0.006米。
生3:十三份的,13毫米=千分之十三米=0.013米。
师:像0.001,0.006.0.013这样的小数是几位小数?
生:三位小数。
师:什么样的分数可以写成三位小数?
生:分母是1000的分数,可以写成三位小数。
师:教师总结:三位小数可以用分母是1000的分数来表示,表示千分之几。这就是三位小数的意义。(并引出四位,五位小数意义的形成)
五.小数的计数单位和之间的进率。
师:小数的计数单位是十分之一,百分之一,千分之一,用小数可以分别写成0.1,0.01.0.001……
并简单说明小数相邻俩个计数单位之间的进率是10.只不过是除以10的关系。
六.练习。
七.板书设计
小数的意义
1分米=十分之一米=0.1米
1厘米=百分之一米=0.01米
1毫米=千分之一米=0.001米
小数的计数单位是十分之一,百分之一,千分之一,用小数分别表示为0.1,0.01,0.001。
在小数中,相邻的俩个计数单位之间的进率为10.
小数的意义教学设计10
教学内容:
北师大版教材第八册小数的意义
教学目标:
1.使学生了解小数的产生,理解小数的意义。
2、培养学生收集信息、动手操作能力和抽象概括能力。
3、渗透事物之间普遍联系的观点、实践第一的观点。
4、加强对学生学习方法的指导。
相对应的课程目标:
1、进一步认识小数,探索小数、分数之间的关系,并会进行转化。
2、进一步体会数在日常生活中的作用,能运用数表示事物,并能进行交流。
教学重点、难点:
理解和抽象小数的意义。
教学理念:
1、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。让学生用个性化的理解方式表达对小数的理解。
2、尊重每一位学生的学习成果,建立平等、民主、愉悦的学习氛围。
教材及学情分析:
小数的认识是在三年级下册“元、角、分与小数”及“分数的初步认识”的基础上进行的。“小数的意义”是通过实际操作,借助几何模型使学生体会到小数与分数之间的关系。小数是十进分数的另一种书写形式,要使学生理解小数的意义,必须通过实际操作。把一个正方形看作“1”,把“1”平均分成10份,1份是它的十分之一,就是0.1;把“1”平均分成100份,1份就是它的一百分之一,也就是0.01。从而使学生体会到分母是10、100、1000等的分数可以用小数表示。在练习中通过在直线图上表示十进分数和小数的问题,进一步沟通小数和分数之间的关系。
教师的教就是为了不教,作为学生学习活动的参与者、合作者、引导者,只有让学生拥有好的学习方法才会有真正意义上的有效学习。这也是学生一直迫切需要掌握的。那么这节课在学习新知识的同时另外一个重点就是对学生进行学习方法的指导。
教具准备:
课件
一、导入。
在我们以前的学习当中,重点研究了整数。但是由于在日常生活中我们进行测量、计算等活动的时候往往经常得不到整数的结果,所以我们又进一步学习了分数。其实在用分数表示的基础上我们还可以用小数表示。这个学期我们将重点学习小数。
二、介绍方法:
怎样学好小数呢?要想学好它,就要讲究一定的学习方法,制定一个计划,按一定的步骤学习,就能收到事半功倍的效果了。今天老师就向大家介绍一种学习方法。(出示学习步骤)
学习步骤:关于小数:
1、我已经知道了什么?
2、我还想知道什么?
3、通过学习我又知道了什么?
4、动动手,检测一下。接下来我们就按照这样的步骤开展学习。
三、思考、讨论:
1、我已经知道了什么?
小数点、小数在生活中的广泛运用……
师:看来大家对小数的`了解很有限,那么更有必要认真的学习小数了。
2、还想知道什么?
小数的起源、发展、计算、数位顺序、读写法、意义……
师:要想了解小数的这些知识,首先最基本的就是要了解小数的意义。那么这节课我们就来了解小数的意义吧。
四、引导学生自主学习小数的意义。
1.小数的意义,自学小数的意义(看书第3页)
(1)出示课件,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;取其中3份就是十分之三,用小数表示是0.3。
把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。
(2)以1米为例结合具体的数量理解小数
把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。
2、同桌之间互相交流,用数学语言说一说自己的涂色部分用分数和小数表示,分别是怎样的。
4、师:像0.1、0.5、0.7这样的小数是一位小数。像0.01、0.19、0.08这样的小数是二位小数。
5、想一想:1/1000、1/10000用小数怎样表示?23/1000、127/1000呢?它们分别是几位小数?观察黑板上的数据,想一想:什么样的分数可以写成小数呢?
6、看书P3,找一找你认为最重要的那句话,读一读。分母是10、100、1000……的分数可以用小数表示。
7、看学习步骤3:通过学习我又知道了什么?集体交流
8、质疑(学生提问)
五、学习步骤4:检测。
1、在直线上标出相应的小数、分数。见P5、1
2、分数小数的转化P5 2、3
3、同伴相互出题。
教学反思:
这节课既是一节数学知识学习课,同时又是一节学习方法的指导课。通过对教学的设计,教学,对学生的检测,我有以下体会:
1、教师要善于倾听。学习活动要以学生为本,在学生思考、讨论的过程中,经常会有精彩的见解,教师要善于捕捉。尤其是当学生有独特的见解出现时,教师要及时给予反应,以此保护学生对数学的积极性。当然这需要教师在平时的教学实践中注意有意识地积累。
2、注重方法指导。本节课的特色和重点之一即学习方法的指导。但是学习方法的指导应该是贯穿整个学习过程的,所以教师在进行方法指导的时候要让学生清楚本节课介绍的方法还适合那些内容的学习,其他的学习内容应该用什么样的学习方法更好。
3、注重基础知识的掌握。本节课既让学生学习了好的学习方法,又让学生扎实地学习了小数的意义,关注了学生多方面能力的发展。
存在的问题:数学课程要让学生了解数学在我们生活中无处不在,但本课与生活的联系不够,在学生的发言中教师的把握不及时。另外,要注重多样化的课程资源的整合,学习方式还可以更丰富一些,如认识一位小数、两位小数的方法可以有变化,以拓展学生的思维。
案例点评:《小数的意义》这一节课整体框架好,是一节学习方法指导课。本节课能够很好地确定研究的课题、目标,即学习方法的指导,有研究的方向。并且能够引导学生参与目标的制定;学习过程中能用多种方法引导学生学习,学生基础知识、基本技能掌握较好;师生关系融洽,学习氛围好。
小数的意义教学设计11
(一)教学目标:
1.知识技能目标:通过本节课的学习,让学生理解小数的产生及其意义,掌握小数的读法与写法。使学生在现实的情境中,初步理解小数的含义,学会读、写小数,体会小数与分数的联系。
2.过程与方法:培养学生观察、分析、交流、合作的意识,帮助学生建立起自我评价与反思的意识。
3.情感态度价值观:使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心,激发学生学习数学的兴趣。
(二)教学重点、难点:
1.帮助学生通过自主探索和合作交流,理解小数的意义。这是本课的教学重点灺是本课的教学难点。
(三)教学时间:
1课时。
(四)教学准备:
1.多媒体。
2.课业本。
(五)教学过程:
一、创设情境,激发兴趣,揭示课题。
1.引入:开学前他们去超市买东西,为开学做准备。(cai出示:书包89元,橡皮0.3元,新华字典48元,信封0.05元,水彩笔32元,本子0.46元,文具盒10.9元)
2.走进超市,东西可真多啊!你知道有哪些商品,它们的价格是多少吗?
学生介绍。
可能说出:0.3元3角
0.05元5分
0.46元4角6分
10.9元10元9角
3.你能把这些商品价格分分类吗?并说说你是怎样想的?
学生可能这样分:89元、48元、32元分为一类,因为这些都是整数;0.3元、0.05元、0.46元、10.9元分为一类,这些都是小数。
4.生活中,你在哪里见到过小数?
学生可能回答:超市里商品的价格,文具店里文具的`价格,书店里书店价格。教师可以提示些不同的,如:学生的身高:1.3米,视力表1.5,瓶子上1.5升……,同时配合板书。
5.教师小结:原来生活中这么多的小数,今天这节课我们就一起进一步研究小数。
(板书课题:认识小数)
二、引导学生感知小数的含义。
1.小数的读法。
(1)(cai只剩下小数的价格)请生读一读这些小数。
(2)师:这些小数你们都会读了,我写一个你们会读吗?
师写:48.48,请生读。师:
这两个“48”的读法为什么不一样?想一想,小数的读法与整数读法有什么不同?
(3)小结小数的读法:整数部分按读整数的方法读,小数部分从左往右顺次读。
(4)读一读:100.04。
2.认识两位小数表示百分之几。
(1)一位小数与十分之几。
①师:1角是1元的几分之一?是几分之一元?你是怎么想的?
生:1元=10角,0.1元是1角,0.1元=元。
师配合板书:1元=10角0.1元(1角)=元
②师:那么0.3元是几分之几元呢?
生可能回答:0.1元是元,0.3元是元。
师配合板书:0.3元(3角)=元
③师:你说一个一位小数的价格,并请同学说说它是几分之几元?
汇报:男女生对出题,互相做答。
(2)两位小数与百分之几。
①师:0.05元是几分之几元?
生独立思考后汇报,老师配合完成板书:
1元=100分0.01元(1分)=元
0.05元(5分)=元
②师:0.06元是几分之几元?
同桌互说后请一生汇报。
③师:(将0.06改为0.46)0.46元是几分之几元?你会说吗?
师配合回答完成板书:46分=元=0.46元
④师:你出一个两位小数的价格,请同桌说出它是几分之几?
同桌互说后,请一组汇报,并板书记录。
(3)练一练第1题的第(1)小题。
①出题后生独立思考。
②请生汇报。
3.试一试。
(1)(cai出示尺子,并指着1厘米处)
①这是多长?
学生可能回答:1厘米。
②师:如果用“米”作单位,你能说出它的长度吗?
学生汇报,师配合板书:
1米=100厘米1厘米=米=0.01米
(2)师在图中指2个整厘米的长度,请生用“米”作单位说一说?
(3)在书上完成试一试的题目。生汇报,进行核对。
(4)师:对着尺子你能用“米”作单位说出这些整厘米的长度,你能说出一个这尺子没有的整厘米数,并请同桌用“米”作单位说一说吗?
4.读一读黑板上的分数与小数。
三、帮助学生抽象出小数的意义。
1.例2。
(1)(cai出示第1幅图)师:这是一个正方形,我们用整数“1”表示。
(cai出示第2幅图)师:看一看,涂色部分占整体的几分之几?学生回答:涂色部分占整体的。
(cai出示第3幅图)涂色部分占整体的几分之几?学生回答:涂色部分占整体的。
(2)写成小数是(),写成小数是()。
(3)能分别说出空白部分用分数和小数怎样表示吗?
学生汇报。
2.试一试。
(1)(cai出示试一试)生独立审题后完成,同时“比较每组的分数和小数,有什么发现?”
(2)比较上面每组的分数和小数,你能发现什么?
学生可能回答:十分之几的分数可以用一位小数表示,百分这几的分数用两位小数表示。
(4)师:是不是这样呢?看看用这个方法能不能完成看p30练一练第2题。
再请学生说说改写的方法。
(5)出示:写成小数是多少?呢?你能写一写,读一读吗?
为什么在小数点后添“0”?
(6)请学生汇报改写的方法。
(7)板书:分数小数
十分之几一位
百分之几两位
千分之几三位
四、巩固练习。
1.p32练习五1
2.p32练习五2
(1)出示后请生读一读这些小数,后独立完成是课业本上。
(2)说一说,分母各是多少?
3.p32练习五3
(1)完成在课业本上。
(2)说出各是几位小数。
4.p32练习五4
(1)想一想,用几位小数表示。
(2)口答第2行的结果,第1行写在课业本上。
为什么在小数点与“2”点添“0”?
5.p32练习五5
(1)一生读题。
(2)同桌互相说一说。
(3)请一生汇报。
五、总结。
1.今天的课上你学会了什么?
2.在学习中得到哪些经验?
小数的意义教学设计12
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重点:
理解小数的意义。
教学难点:
理解小数的计数单位。
教学过程:
一、创设情境,复习引入
1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,咱们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)
请同学们先回想一下,对于小数,你已有那些认识?……谁能举出一些小数的例子?并说说它表示的意义吗?
生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。
师:说得很好,谁再来说一个?
生2:0.5表示十分之五,
生3:0.4表示十分之四。
师:像这样的小数同学们都能说出来吧!(根据学生的回答,教师板书一组一位小数:0.2、0.5、0.4……,并说明一位小数表示十分之几)现在老师如果让你把这些小数用画图的方式表示出来,你能行吗?
生:能!
师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?
生:好!
师:哪位同学展示一下你画的小数?把你的想法和画法和同学们说一说?
生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。
师:老师想问问你,为什么取其中5份就是0.5?
生1:因为其中一份是0.1,5份就是0.5。
师:谁想再来展示一下?
生2:我先画一个长方形平均分成10份,取其中的2份,是十分之二,也就是0.2。
师:刚才同学们用自己喜欢的方法画出了自己喜欢的小数,看这些小数,它们都是几位小数?
生:一位小数。
师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?
生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。
2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的'质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)
二、结合情境,探究新知
1.学习小数的读写。
(1)师:请同学们仔细观察情境图,你获得了那些数学信息?
(学生根据情境图说出信息)
师:这个小数读作?第二个小数读作?
这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?
(读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)
(2)师:谁来读一读下面这两条信息?这两条信息中有两个小数,谁能到黑板上把这两个小数写出来,其他同学写在练习本上。谁来说说写小数时应注意什么?
(写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)
2.学习两位小数的意义。
(1)在正方形纸片上表示出0.25。
这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。
谁能到前面来说说你的想法和画法?
学生到前面交流。
师:你是把什么看作一个整体,平均分成( )份,表示其中的( )份,用分数表示是( ),0.25里面有( )个0.01。
老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。
小数的意义教学设计13
教学内容:
人教版数学四年级下册P50-51
内容分析:
本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。
小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”
教学设想:
三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。
教学目标:
1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。
2、认识小数的数位和计数单位。
3、知道小数每相邻两个计数单位间的.进率是10。
教学重点:
理解小数的意义
教学难点:
小数每相邻两个计数单位间的进率是10
教学过程:
课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。
下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果
课件出示学案内容
一.复习导入
(出示一位学生的分类结果)
师:请这位同学来回答,你把这些小数分成了几类?
生:三类
师:你是怎么想的?
生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类
师:你们分的和他一样吗?
小数点右边的部分是小数部分(板书补充数位顺序表)
小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?
生:两位小数
师:三位的呢?
生:三位小数
师:今天我们一起来探究小数的意义(板书:小数的意义)
【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】
二、新授
(一)认识一位小数
1、出示尺子图
师:看这幅图,你是怎样填的?
生:分数:1/10米,小数:0.1米
师:你是怎么想的?
生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。
师:谁再来说一说?
2、出示面积图
师:再看这个图,你还能用分数和小数表示吗?
生:分数是1/10,小数是0.1
师:为什么它也能用0.1表示?
生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.
师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1
(出示课件:1/10=0.1)
3、出示第二幅面积图
师:那现在涂色部分是多少?
生:分数是3/10,小数是0.3
师:0.3表示什么意思?
生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3
师:0.3里面有几个0.1?
生:0.3里面有3个0.1
4、出示
师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义
(同桌互说)
汇报:
师:第一个谁来说?
生:分数是6/10,小数是0.6
师:0.6里面有几个0.1?
生:0.6里面有6个0.1
师:第二个是多少?
生:分数是9/10,小数是0.9
师:0.9表示什么?
生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9
师:0.9里面有几个0.1?
生:0.9里面有9个0.1
5、课件出示
师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?
生:分母都是10,都是平均分成了10份得到的
师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?
生:一位小数
师:十分之几的数用一位小数表示(课件出示)
给同桌读一读这句话
6、课件出示
师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?
出示
生:10/10、1
师:十分之十就是1
1里面有几个0.1?
生:1里面有10个0.1(课件出示)
7、出示
师:这个图怎么表示?
生:1.2
师:1.2里面有几个0.1?
生:1.2里面有12个0.1(课件出示)
8、出示
、
师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)
0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)
十分之一所占的数位就是十分位(补充数位顺序表)
师问:十分位的计数单位是什么?
生:十分之一
师:十分位所占的数位是?
生:十分位
师:老师在说一个小数:0.8
8在哪一位?(生:十分位)
它的计数单位是什么?(生:十分之一)
有几个这样的计数单位?(生:8个)
【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】
(二)认识两位小数、三位小数
1、自主探究
师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?
接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。
先请一位同学读一读
学生活动
2、练习反馈
师:同学刚才讨论的很积极,这几个问题都解决了吗?
那老师出几个问题考考大家
3、出示
师:涂色部分是多少?
生:分数是1/100,小数是0.01
师:你怎么想的?
生:把正方形平均分成100份,其中的一份是1/100,小数是0.01
师:谁再来说一说?
出示
师:这一个呢?
生:分数是4/100,小数是0.04
师:0.04里面有几个0.01?
生:有4个0.01
出示
师:这是多少?
生:分数是21/100,小数是0.21
师:0.21里面有几个0.01?
生:有21个0.01
4、认识两位小数的计数单位和数位
师:两位小数的计数单位是什么?(生:0.01)
也可以说是百分之一(补充数位顺序表)
百分之一所占的数位是?(生?百分位)(补充顺序表)
两位小数表示的是?(生:百分之几的数)
5、三位小数的意义
出示
师:再看这个图,涂色部分是多少?
生:分数是1/1000,小数是0.001
师:0.001表示什么?
生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001
师:谁再来说?
出示:0.125
师:再看这个数,是多少?(生:零点一二五)
没有图了,你还能说出他的意义吗?
生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125
师:0.125里面有几个0.001?
生:有125个
6、三位小数的计数单位和数位
师:三位小数的计数单位是什么?(生:0.001)
也可以读作千分之一
千分之一所占的数位是?(生:千分位)
(补充数位顺序表)
三位小数表示的是什么数?(生:千分之几的数)
【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】
7、延伸
师:那四位小数呢?(生:万分之几)
计数单位是?(生:万分之一)
往下说的完吗?(生:说不完)
我们可以用省略号表示(补充数位顺序表)
8、拓展
师:小数部分有没有最小的计数单位?
生:有
师:有不同意见吗?
生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小
师:你们听懂了吗?
想一想,0.1是怎么得到的?
生:平均分成10份,1份是0.1
师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?
生:没有最小的计数单位。
师:小数部分有没有最大的计数单位?
生:十分之一
9、修改数位顺序表
师:拿出你刚才写的数位顺序表,看一看你写的对吗?
有问题的修改一下
(三)计数单位间的进率
1、出示:
师:第一个图的涂色部分用小数表示是?(生:0.1)
第二个图的涂色部分用小数表示是?(生:0.10)
你发现了什么?
生:两个图的涂色部分一样大
师:也就是他们大小相同。(出示:0.1=0.10)
有什么不同吗?
生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份
师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份
第一个表示1个0.1,第二个表示10个0.01
你还有什么发现?
生:10个0.01是0.1(板书)
师:一起读一遍
2、出示(由1个0.1增加到10个0.1)
生一起数到1
师:你发现了什么?
生:10个0.1是1
师:(板书)再读一读
3、小结
师(指数位顺序表):你有什么发现?
生:进率是10
师:对,小数和整数一样,相邻两个计数单位间的进率是10
小数的意义教学设计14
第二课时
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)第76页例3,第77页课堂活动第1,2题,练习十五第5~10题以及思考题。
教学目标:
1通过对整数比较大小方法的复习让学生自主探索比较小数大小的方法。
2进一步体会小数在生活中的作用。
3通过比较小数的大小,培养学生的比较能力和判断能力。
教学重点:
探索比较小数大小的方法。
教学过程:
一、复习旧知
教师:同学们会比较整数的大小吗?请说说整数大小比较的方法。
二、教学新课
1揭示课题。
教师:小数的大小又是怎样比较的呢?今天我们就一起来探讨这个问题。
23.15○2.87
教师:你怎样比较这两个小数的大小?3讨论并说说两个小数是怎样比较的'。
得出结论:两个小数比大小,整数部分大的那个数大。
4独立完成例3(2)、(3)小题。
小结比较方法,强调位数不同时的比较方法。
5学生总结小数比较方法,并和同桌相互说一说。
6第77页试一试:比较每组中两个数的大小。
3.7○2.8530809○0.8932○3.200全班齐练,再集体订正。
三、巩固运用强化小数大小比较方法。
1第77页课堂活动第1,2题。
第2题同桌各写一个小数,再比较大小。
2比较超市商品的单价。
3老师收集了运动会上我班几个同学跳高和60m短跑的情况,请大家帮老师把跳高成绩按从高到低排一排,把60m短跑的成绩按从快到慢排一排。
完成第79页第8题。
组织学生讨论:跳高的高度与赛跑的时间在评定时有什么区别?
4独立完成练习十五第5,6,7,9题。
引导学生理解:“最接近的整数”的含义。
四、拓展提高
1在○里填>,<或=。
(练习十五第10题)学生先独立完成,再抽学生说明理由。
2思考题。
用0,1,2三个数字及小数点,写出小数部分是两位数的小数,并按从小到大的顺序排列。
引导学生进行有序的思考,有序的排列,有序的比较。
五、课堂小结
今天学习了什么?你有什么收获?抽学生说一说。
板书设计:
小数大小的比较
3.15○2.87整数部分大的那个数大。
0.31○0.5整数部分相同,十分位上的数大的那个数大。
0.58○0.52整数部分相同,十分位也相同,比较百分位。
小数的意义教学设计15
教学内容:
国标苏教版第28~30页例1、例2及相应的“试一试”、“练一练”,练习五第1~5题。
教学目标:
1、在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2、在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3、初步养成善于观察、善于比较、善于交流等良好的学习习惯。
教学重点:
理解小数的意义。
教学过程:
一、交流信息,引入课题
1、在三年级时,我们认识了一些小数,你能说出几个吗?
2、课前大家已经收集了很多关于小数的资料,老师选择了一些比较有价值的,你可以轻轻地把这些资料读一读,然后挑选你最感兴趣的一条,谈谈你了解到了什么?又想到些什么?
(1)一块橡皮0.6元,一本练习本0.75元。
(2)一张信封0.05元。
(3)王琳的身高1.42米,体重32.5千克。
(4)刘翔在国际田径超级大奖赛中,以12.88秒的成绩刷新世界记录。
(5)一枚1分硬币的厚度大约是0.001米。
(6)人体的正常体温是36.5°C-37.5°C。
(7)“神舟六号”在太空飞行时距地球表面最远的高度大约是344.725千米。
3、引入课题
这些信息中的数都是小数,用小数可以描述一些事情,反映一些现象。看来,同学们对小数已经有了一些认识,想不想作进一步的的研究?你还想知道小数的哪些知识?
根据学生提出的问题揭示课题。
二、探究新知
1、学习小数的读法
小数怎么读?谁能把信息中的几个小数再读一读?
能发现小数是怎么读的吗?
让学生发现:小数点前面的`数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。
出示几个小数,让学生读一读:0.390.1080.0060.80
2、探究小数的意义和写法
(1)如信息中的0.6、0.75、0.05元这些小数是怎么来的?
小组内回忆6角写成0.6元的过程。
那5分为什么可以写成0.05元?同桌商量商量。
引导学生:元与分之间的进率是多少?1分是1元的1/100,是1/100元,可以写成0.01元,那5分是1元的几分之几?是几分之几元?写成小数是多少元?
学生尝试说说7角5分转化为0.75元的过程。
那6角8分可以写成几元?
(2)0.01米是怎么产生的?谁能大胆地猜测一下?(教师出示米尺图)
引导学生说出:1厘米是1米的1/100,是1/100米,写成小数是0.01米。
以小组为单位,在直尺上另外找出两个刻度,想一想,写成分数和小数各是多少?把它们写下来。
组织交流。
(3)猜一猜,把1米平均分成1000份,还会得到什么样的分数?如何写成小数?
把自己的猜想和小组里的同学交流交流,并试着把这些分数、小数写下来。
组织全班交流。
3、抽象概括:仔细观察上面每组的分数和小数,你能发现什么?把你的发现在小组里和同学交流。
引导学生概括:通过刚才的学习,我们知道分母是10、100、1000……的分数,可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
以前我们学习了一位小数,今天又认识了两位小数和三位小数,还会有位数更多的小数吗?
4、教学“试一试”
先让学生独立完成,再组织交流,说说怎么想的。结合图来理解每个小数把整数“1”平均分成了几份,表示这样的几份。
三、练习拓展
1、把听到的小数记录下来。
早晨6点30分,小明从1.2米宽的小床上起来,挤了0.008米长的一段牙膏,用了0.05小时刷牙洗脸,喝了一杯0.243升的牛奶,吃了一只面包,背起2.5千克的书包,飞快地向离家1.46千米的学校跑去。
指名板演。读一读这几个小数,选择整数部分是零的小数说说它们表示几分之几。
2、最近学校附近开了一家文具店,但店里商品的标价不太规范,请你们帮个忙,把这些标价改成用“元”作单位的小数。(图略)
铅笔3角小刀8分直尺5角9分练习本76/100元
3、把你认为长度相同的找出来
4毫米0.004米4/1000米0.04米4厘米4分米4/10米
4、估价:一筒薯片的价格在5元~6元之间。
5、把课前收集的小数信息,挑一
个用今天学到的知识介绍给同桌听。
四、课堂小结
今天,我们进一步认识了小数,你有哪些收获?
在我们的生活、生产中经常用到小数,课后围绕“生活中的小数”写一篇数学日记。
反思:
我总认为“小数的意义和读写”这一内容用传统的讲授法比较恰当,因为这些概念是约定束成的,而动手实践、自主探究等只能是一种形式上的追求。如何使传统教学与新理念融合在一起,达到比较完美的教学效果,本课进行了一点尝试。
1、以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。课始,展示学生课前收集的小数信息,把小数的意义设置在一种生活化、需求化、个性化的大背景中,让学生用个性化的理解方式来表达对小数的理解。由于小数在生活中的普遍存在,学生已有一定的经验,因此,在教学小数的读法时,充分利用个别学生会读这一资源,让这部分学生大胆释放自己的学习能力和已有经验,通过他们的引读,让其他学生发现小数的读法。
2、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。小数的意义是本课的教学重点,在抽象这个概念的过程中,通过旧知的迁移,尝试让学生自主探究、合作交流,把他们引入研究性学习的氛围,主动建构知识。如回忆了6角为什么能写成0.6元后,让学生在小组里商量商量5分为什么可以写成0.05元?在米尺上找两个整厘米数的刻度,把它们写成分数和小数;猜一猜,如果把1米平均分成1000份,会产生什么样的分数,又如何写成小数?在学生经历了这么多的探究、体验后,引导学生观察每组中的分数和小数,从而发现抽象出分数的意义。
3、在解决实际问题中巩固知识,让学生感受数学的魅力。本课的练习安排,彻底改变了教材上的读读、写写、做做的模式,而是通过把听到的情境中的小数记录下来、改写商品标价、找相同的长度、估价、介绍收集的小数信息等形式,使知识得到巩固和拓展,让学生感受到数学的有趣、真实。
【小数的意义教学设计】相关文章:
小数的意义教学设计10-21
小数的意义教学设计03-02
【精】小数的意义教学设计10-16
【热】小数的意义教学设计11-18
【热】小数的意义教学设计08-01
小数的意义教学设计【荐】11-01
小数的意义教学设计【推荐】10-07
小数的意义教学设计【精】12-14
【荐】小数的意义教学设计10-25
小数的意义教学设计【热门】10-01