当前位置:语文迷>教学文档>说课稿> 七年级数学说课稿

七年级数学说课稿

时间:2024-05-15 09:15:59 说课稿 我要投稿
  • 相关推荐

七年级数学说课稿

  作为一位优秀的人民教师,常常需要准备说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么写说课稿需要注意哪些问题呢?下面是小编收集整理的七年级数学说课稿,欢迎阅读,希望大家能够喜欢。

七年级数学说课稿

七年级数学说课稿1

  一、说教材:

  本节课主要是在学生学习了有理数概念的基础上,从表达方位这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二、说教学目标:

  知识与技能:使学生理解数轴的三要素,会画数轴;能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示。

  情感价值观:向学生渗透数形结合的数学思想,知道所有有理数可以在数轴上表示,培养学生对数学的学习兴趣。

  过程与方法:分层次教学,讲授、练习相结合。

  三、说教学重、难点:

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

  难点:正确理解有理数与数轴上点的对应关系。

  四、说学情:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的'渗透性。

  五、说教学策略:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

七年级数学说课稿2

  一、教材分析:

  1、教材的地位和作用

  本节课题是新人教版义务教育课程教科书七年级·下册·第六章·第二节“平方根”第二课时的内容。是在七年级学习了乘方运算的基础上安排的,是学习实数的准备知识。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是有助于了解n次方根的概念,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。

  2、教学目标

  ⑴、知识与技能

  帮助学生了解平方根的概念,会进行有关平方根的运算;理解算术平方根与平方根的联系和区别。

  ⑵、教学思考

  在具体问题中抽象出平方根的概念,培养学生的抽象概括能力。

  ⑶、解决问题

  通过举例使学生明确平方根是靠它的逆运算平方来进行,发展学生学习数学的能力。

  ⑷、情感态度与价值观

  通过主动参与使学生勇于面对困难并能够解决困难,发展合作交流意识。

  3、教学重点、难点与关键:

  重点:平方根的概念和性质难点:平方根的概念和表示的理解。

  关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。

  二、学情分析

  根据教学中学生身心发展特点,我从学生现有知识基础、学习现状等方面分析。

  1、学生的现有基础

  在“平方根”的学习中,学生在七年级时已学过了乘方的运算,上节课又学习了算术平方根的运算,初步理解了根号的表示,有助于本节的学习活动进行。

  2、学习的现状

  此阶段的学生具有很强的好奇心、强烈的“自我”和自我发展的意识,因此对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

  三、说教法与学法

  教法:

  (1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考.

  (2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学.即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度.

  (3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享.

  学法:学生是学习的主人,我们应该把过程还给学生,让过程与结果并重。新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此学生的学法我定为小组交流合作法和自主学习法.这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台.

  四、教学程序:

  (一)创设情境,激发兴趣

  首先,我动画的形式,用多媒体示出问题情境:

  (1)()2=9,()2=9;()2=0.64,()2=0.64.

  (2)如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的;

  (3)如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的。

  总结得出平方根的概念:如果一个数的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根)。这样的设计,其目的是通过填空,与算术平方根比较引出平方根的概念,沟通二者之间的关系,与乘方相结合,培养学生的逆向思维能力。

  (二)合作交流,理解概念

  1、填空:

  (1)32=(),(-3)2=(),22=(),(-2)2=(),02=()

  (2)()2=&

  nbsp;9,()2=4,()2=0(3)有没有一个数的平方等于负数的?

  2、想一想

  (1)正数的平方根有()个,它们互为();(2)0有()个平方根,它是();

  (3)负数______平方根(填“有”或“没有”)

  (三)综合训练,突出重点

  1、出示例3求下例各数的平方根:

  (1)64;(2);(3)0.0004;(4)(-25)2;(5)11

  2、为了加深对平方根的理解,我出示课本P42页“想一想”:

  (1)()2=();()2=();()2=()(2)对于正数a,()2=()

  (四)课后小结

  (五)作业P47第3和第4题

  五、板书设计平方根

  平方根概念:……例3:---------------

  开平方概念:……解:(板演详细解题过程)……

  法则:……

  六、设计说明:

  (一)、指导思想:

  依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的`认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。

  (二)、关于教法和学法

  采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。(三)、关于教学程序的设计

  在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

  ①注重目标控制,面向全体学生,启发式与探究式教学。

  ②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。

  ③注重师生间、同学间的互动协作,共同提高。

  ④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

七年级数学说课稿3

各位老师:

  大家好!

  我是XX中学数学教师XXX,我说课的题目是《线段、射线和直线》内容选自新教材浙教版七年级(上)第七章7。2、

  一、设计理念:

  贯彻落实数学课程标准,建立新的数学教学理念,实施课程教学民主化,促进开放式教学的深入研究,充分发挥教师的主导作用和学生的主体地位,注重知识的发生、发展过程,充分展示学生的思维过程,使学生经历一个“再发现”的学习过程。向学生提供探究和交流的空间,紧紧抓住“数学思维活动的过程”这条主线,鼓励学生大胆联想、猜想,用自己的语言表述操作过程,主动探索并获取知识,将面向全体落到实处,培养学生的创新精神和实践能力。

  二、教材分析:

  1、教材的地位和作用:

  《线段、射线和直线》是图形认识中非常重要的内容。从知识上讲,直线、射线、线段是最简单、最基本的图形,是研究复杂图形如三角形、四边形等的基础。从本节开始出现的几何图形的表示法、几何语言等,也是今后系统学习几何所必需的知识。本节课的学习起着奠基的作用,重点训练学生动手操作及学会用规范的几何语言边实践边叙述的能力,逐步适应几何的学习及研究方法,从思想方法上讲,直线的得出经历了由感性到理性,由具体到抽象的思维过程,同时线段、射线的表示法是由直线类比得到,渗透了类比的数学思想。

  2、教学重点和难点:

  重点:线段、射线和直线的概念和表示法。

  难点:射线的表示法以及两点确定一条直线的实际应用。

  突破难点的关键:鼓励学生动手操作,主动探索和讨论交流。

  3、教学目标:

  依据课程标准,结合七年级学生的认知结构和年龄特征,确定以下目标:

  1、知识目标:

  (1)在现实情境中进一步了解线段、射线、直线等简单的平面图形。

  (2)通过操作活动,理解两点确定一条直线等事实,积累操作活动经验。

  2、能力目标:

  (1)让学生经历观察、思考、讨论、操作的过程,培养学生抽象化、符号化的数学思维能力,建立从数学中欣赏美,用数学创造美的思想观念。

  (2)能用直尺画经过两个已知点的直线。

  3、情感目标:

  (1)在探究操作中得出结论,获取成功的体验,激发学习热情,建立自信心。

  (2)培养学生独立思考,与同伴合作交流的能力。

  三、教法学法分析:

  1、采用“实验──探究──发现”的教学过程,鼓励学生动脑、动口、动手参与教学活动,感悟知识的发生、发展过程,充分调动学生学习的积极性、主动性。

  2、通过一系列的探究问题组织好学生与学生之间、老师与学生之间的合作交流,充分展示学生的思维过程。在教学过程中,当学生思维受阻或感到困惑时,教师给与必要的引导,做到“引而不灌”。在教师的引导下由学生得出结论。

  3、充分体现教师的组织、引导作用,发挥学生的主体地位,通过提供问题情境,鼓励学生动手实践、操作,自主探索与合作交流相结合,引导学生掌握思考问题的方法及解决问题的途径。

  四、教学设计

  (一)认识图形

  活动内容和步骤:

  看一看,观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇来表达(电脑动画展示)

  给出火车铁轨、极光、输油管道三幅图片,学生会发现笔直的铁轨可以抽象成直线,极光可以抽象成射线,输油管道可以抽象呈线段,使学生体会到数学知识来源于实际生活,激发学生的学习兴趣。

  2、想一想,交流小学学过的线段、射线和直线的有关知识。(利用两个激光笔灯演示线段、射线和直线的不同)

  3、找一找,在我们的现实生活中,还有那些物体可以近似做线段、射线和直线?(让同学们积极发言,尽量让他们举出尽可能多的例子。)

  之后教师板书课题《7。2线段、射线和直线》

  4、连一连,请你把左边对图形的描述和右边相应的图形用线连起来:

  以A为端点,经过点B的射线

  连结A,B两点的线段

  经过A,B两点的直线

  (二)表示图形

  活动内容和步骤:(教师画出两条长短不一的线段)

  1、如何表示2条不同的线段呢?

  (根据线段的特征,学生思考讨论,教师征集各类结果最后适当加以补充引导说明表示方法)

  2、如何表示射线呢?

  3、直线又该怎样表示?

  4、做一做、比一比

  ⑴用两种方式分别表示图中的`两条直线。

  ⑴ ⑵

  ⑵已知点O、P、Q(如图),画线段PQ,射线OP,和直线OQ。

  ⑶图中的几何体有多少条棱?请写出这些表示棱的线段。

  ⑷请写出图中以O为端点的各条射线。

  ⑶ ⑷

  (三)合作学习(四人一组)

  活动内容和步骤:

  1、画一画

  ⑴经过一个已知点画直线,可以画多少条?

  ⑵经过两个已知点画直线,可以画多少条?

  2、做一做

  如果你想将一根细木条固定在墙上,至少需要几枚钉子?

  3、想一想:由此得出什么结论?

  (小组讨论完成三个问题,通过操作使学生发现直线的一些性质,培养学生的空间观念,思考归纳总结出结论:“经过两点有且只有一条直线” 。)

  4、做一做

  经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,请说出其理由。

  5、比一比

  各组试再举一个在日常生活中,能反映“经过两点有且只有一条直线”的实例?

  (四)学生小结后教师整理成表

  1、图形名称图形表示法端点个数

  直线

  直线AB(BA)

  或直线m没有

  射线

  射线AB一个

  线段

  线段AB(BA)

  或线段a两个

  2、直线的基本性质:经过两点有且只有一条直线。

  (五)图片欣赏

  构成这两幅美丽图案的是曲线吗?

  (六)布置作业

  课本167页作业题A组,B组。C组为选做题。

  (七)教学评价:

  对学生数学学习效果的评价,既要关注学生知识和技能的理解和掌握,更要关注他们情感与态度的形成与发展;既要关注数学学习的结果,更要关注他们在学习过程中的变化与发展。在数学过程的各个环节中,把学生自我评价、学生互评、教师评价结合起来,实现评价主题的多样化。课堂中采用口答、课堂观察、课后作业等评价方式,多层面了解学生。尊重学生的个体差异,对不同程度的学生提出不同的要求。在整个教学过程中,通过学生参与数学活动的程度,自信心、合作交流的意识,独立思考的习惯,发现问题的能力进行评价,教师以激励性的语言鼓励学生,培养学生创新能力。学生基本能了解直线、射线、线段的性质、表示法,能根据几何语言画出图形,逐步加深对几何语言的认识与运用,完成本节课的教学目标。

  (八)板书设计:

  课题

  直线的基本性质:例1、例2、

  下载完整WORD文档含有图形、公式、符号等。

七年级数学说课稿4

  本节课的教学内容去括号是中学数学代数部分的一个基础知识点,是以后化简代数式、分解因式、配方法等知识点当中的重要环节,对于初一学生来说接受该知识点存在一个思维上的转换过程,所以又是一个难点,由此不难看出,该知识点在初中数学教材中有其特殊地位和重要作用。

  ●教学目标:

  1、知识目标:1)学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固地掌握。

  2)能正确且较为熟练地运用去括号法则化简代数式。

  2、能力目标:1)培养学生的观察、分析、归纳能力。

  2)锻炼学生的语言概括能力和表达能力。

  3)培养学生的知识分解、知识整合能力。

  3、情感目标:1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。

  2)通过学生间的相互交流、沟通,培养他们的协作意识。

  ●教学重难点

  重点:去括号法则及其运用。

  难点:括号前面是“—”号,去括号时,应如何处理。

  ●教法与学法分析

  为充分体现教师是课堂活动的组织者和推动者,同时鉴于七年纪学生的思维所呈现出的具体、直观、形象之特点,为突破难点,选用“情境——探索——发现”的教学模式,通过直观教学,借助多媒体动画吸引学生的注意力,唤起学生的求知欲,激发学习兴趣,在整个学习过程中,以“自主参与、勇于探索、合作交流”的探索式学法为主,从而达到提高学习能力的目的。

  ●教学流程图

  综合以上各方面的分析,紧扣教学重点,力求突破教学难点,达到教学目标,我将本节课的教学过程设置为以下几个环节:

  复习旧知

  承前启后

  创设情景

  导入新课

  探究学习

  归纳总结

  动画演示

  深化理解

  理解应用

  拓展升华

  反馈调控

  评价激励

  问题备份

  全面考虑

  ●教学实施过程

  教学步骤 教学过程

  教师活动 学生活动

  (一)回顾旧知,承前启后 1、什么叫做同类项? 2、叙述合并同类项的法则。 3、若a、b、c均为有理数,请指出以下代数式中的同类项及其系数,并进行合并。 ① a+2b-c ②a+(3c+2b-a)-(2a-c)

  由于有括号学生暂时无法正确指出各项系数,从而激发学生的求知欲。 问题:第三问第二小题你会进行合并吗?

  回答 (意图:对旧知识进行进一步加深和巩固)

  (二)创设情景,导入新课 问题一: 周三下午,校图书馆起初有a名同学,后来某年级组织同学来阅读,第一批来了b位同学,第二批又来了c位同学,则馆内一共有多少位同学? ① a+(b+c) ② a+b+c 1、联系:它们等值 2、区别:①式有括号②式没有括号。 3、从①式到②式叫去括号。

  1、你可以用几种表达式来回答这一问题? 2、这几个表达式之间有怎样的联系和区别? 3、从①式到②式你能给它起个名字吗?

  观察、思考、回答

  小组讨论,发现见解,相互点评,达到共识。 (意图:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力。

  (三)探究学习,归纳总结

  a + ( b + c ) = a + ( + b + c ) = a + b + c

  动画演示: 法则:括号前面是“+”号,去掉括号及其前面的“+”号,括号内各项不变号。 1、让学生观察思考后回答: ①、a+b+c又可以读作什么? ②、表格二、三行之间你可以发现什么? 2、引导学生得出正确的法则。 3、对学生的不同见解暂时保留,对得出的结论给予评价。 观察讨论 回答问题

  共同探讨 分类总结

  (意图:抓住学生的认知特点,加入动画演示,激发学习兴趣,使学生主动参与课堂活动)

  (四)创设情景,继续新课 问题二: 若图书馆内原有a位同学,后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,则馆内还剩下多少位同学? ①a-(b+c) ②a-b-c 1、联系:它们等值 2、区别:①式有括号②式没有括号。 3、从①式到②式叫去括号。

  1、你可以用几种表达式来回答这一问题? 2、这几个表达式之间有怎样的联系和区别? 3、从①式到②式你能给它起个名字吗?

  观察、思考、回答

  小组讨论,发现见解,相互点评,达到共识。 (意图:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力。

  (五)探究学习,归纳总结

  a - ( b + c ) = a - ( + b + c ) = a - b - c

  动画演示: 法则:括号前面是“-”号,去掉括号及其前面的.“-”号,括号内各项要变号。 1、让学生观察思考后回答: ①、a-b-c又可以读作什么? ②、表格二、三行之间你可以发现什么? 2、引导学生得出正确的法则。 3、对学生的不同见解暂时保留,对得出的结论给予评价。 观察讨论 回答问题

  共同探讨 分类总结

  (意图:抓住学生的认知特点,加入动画演示,激发学习兴趣,使学生主动参与课堂活动)

  (六)理解应用,拓展升华 解释以下三个问题(理解部分) 1、法则以等式、文字方式出现 ①a+(b+c)=a+b+c ②a-(b+c)=a-b-c ①括号前是“+”号,去掉括号连同它前面的“+”号,括号内各项不变号。

  ②括号前是“-”号,去掉括号连同它前面的“-”号,括号内各项要变号。

  2、法则中关键词语的理解“连同”指括号及括号前的符号,所以去括号不仅要去括号还包括它前面的符号。 3、隐性的一个条件要求:括号内第一项为“+”号时,这个“+”号一般是不写的,但你要把它显现出来。

  教师点评指导。 特别是第三个问题 要予以特别说明。

  学生概括总结法则。 (意图:使学生领悟到剖析数学知识的方法和途径)

  巩固应用(应用部分) 例1:去括号 ① a+(b+c)②a-(b-c) ③a-(-b+c)④a-(-b-c) 例2:先去括号,再合并同类项 ①(x-y-z)+(x-y+z)-(x-y-z)②(a+2ab+b)-(a-2ab+b) ③3(2x-y)-2(3y-2x) 阅读:当x=-2,y=-1时求多项式 3(2x-y)-2(3y-2x)的值 解:原式=(6x-3y)-(6y-4x)=6x-3y-6y+4x =10x-9y 所以当x=-2,y=-1时 原式=10x-9y =10×(-2)-9×(-1) =31

  例题的处理:教师启发、引导、矫正,并从学生角度提出问题。例2③在解题步骤上要引导学生,保证解题的正确性、高效性。

  教师请不同数学素养的学生就阅读部分给以说明,进行点评。

  学生自己探究思考后回答相应结果,并简述理由。

  (意图:体现弹性,满足学生不同需求,突出分层教学)

  (七)反馈调控,评价激励 1、练习 教科书P110练习1、2、3题

  2、课堂小结 (以问答形式,让学生参与小结,有利于帮助学生理清知识脉络,明确学习目标的效果)。 1、教师就学生练习分别给以指导。 2、及时表扬鼓励。 3、强调书写格式。

  问题:1、这节课你学到了什么? 2、你有什么收获?

  认真完成,适时加以讨论。 (意图:及时给予分层强化训练,强调重点、纠正错误点、紧扣关键点。)

七年级数学说课稿5

各位老师:

  大家好,我今天要说的是北师大版七年级上册第一章第二节的内容《展开与折叠》。

  教材分析:

  本节内容承接上节《生活中的立体图形》,是学生在认识了生活中常见的立体图形,如:圆柱、圆锥、球、棱柱以后,进一步通过对几何体进行观察、折叠、展开,了解棱柱的有关概念,认识棱柱的某些特征,探索常见几何体的展开图形,进而发展空间观念,为今后进一步学习几何知识打下良好的基础。

  教学目标:

  本节课要达到的教学目标分三个方面

  1、知识与技能

  经历展开与折叠,发展空间观念,认识棱柱的莫些性质,有关概念。

  2、过程与方法

  经历探索展开与折叠的过程,让学生尝试多角度思考问题。

  3、情感态度价值观

  在学习中,使学生学会合作交流,体会数学活动充满探索与创造,培养学生学习数学的兴趣。

  教学重点:

  常见几何体展开图的识别

  教学难点:

  能准确识别正方体表面展开图

  教学方法:

  主要通过学生观察、猜想、操作、归纳,发展学生的观察能力、动手操作能力,以及归纳总结能力。

  教学材料:

  老师准备棱柱模型,学生准备长方形纸片、扇形纸片等。

  教学流程:

  一、 自主检测阶段

  1、 老师出示棱柱模型,学生通过观察回答以下问题:

  (1)这个棱柱的.上下底面一样吗?他们各有几条边?

  (2)这个棱柱有几个侧面?侧面都是什么图形?

  (3)侧面的个数与底面图形的边数有什么关系?

  (4)这个棱柱有几条侧棱?

  2、学生看课本了解棱柱的有关概念及分类。

  棱:在棱柱中,任何相邻两个面的交线。 侧棱:相邻两个侧面的交线。

  棱柱的分类:根据底面多边形的边数将棱柱分为三棱柱、

  四棱柱、五棱柱、六棱柱······

  正方体和长方体都是四棱柱。

  (通过本阶段的学习,培养学生的观察能力让学生了解棱柱的有关概念及分类标准)

  二、 课堂探究阶段

  1、学生拿出准备的图片,先猜想哪些能折成棱柱,然后实际操作,验证自己的猜想

  (学生经历猜想折叠的过程)

  2 、学生归纳棱柱的有关特征

  (1)棱柱的上下底面都是相同的多边形

  (2)棱柱的侧面都是长方形

  (3)棱柱的所有侧棱长都相等

  (培养学生的分析归纳能力)

  3 、先猜想,再动手操作并回答

  (1)圆柱的展开图是什么?

  圆锥的展开图是什么?

  (提示学生把一张长方形纸卷起来,得到什么?把一张扇形纸卷起来,得到什么?学生通过展开、折叠等操作活动,发展动脑动手能力,增强空间观念)

  4、 让学生拿出事先准备的图片,先猜想能不能折成正方体,并进行实际操作验证。

  5 、老师出示问题:正方体沿着某些棱展开有哪些展开图?

  学生自己思考并交流展示(通过交流展示,培养学生的合作交流意识)

  三、巩固提升阶段:

  1、 三棱柱有( )个顶点,( )条棱,( )个面。 四棱柱有( )个顶点,( )条棱,( )个面。 五棱柱有( )个顶点,( )条棱,( )个面。 N棱柱有( )个顶点,( )条棱,( )个面。

  2、下列能拼成正方体的有( ),在能拼成正方体的图中标上不同的数字,使相对面上的数字之和为20。

  (巩固提升共两道题。第一道题,学生通过做题进一步掌握棱柱的特征,并通过分析三棱住、四棱柱、五棱柱的顶点数、棱数、面数,使学生掌握它们的个数特点,进而总结出N棱柱的顶点数、棱数、面数与底边多边形的边数的关系,培养学生的分析综合能力,教会学生找规律的方法。第二小题先让学生回答能折成正方体的图形,再进一步让学生找出相对面,并填上相应的数字,复习了加法运算及正方体展开图)

  四、作业布置:

  课本习题(巩固当堂所学知识)

七年级数学说课稿6

  一、教材分析

  在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。概率正是通过对不确定现象和事件发生可能性的刻画,研究客观世界中的随机现象,来为人们更好的制定决策提供依据和建议。因而,义务教育苏科版数学教材七年级下册第十三章第1节安排了《确定与不确定》的内容,它是在学生已经具备了一定的收集数据的能力,并能对其进行简单的数据分析,进而寻找出其中规律的基础之上进行学习的。这一阶段的学生已经知道了生活中的一些常见的现象,能对生活中的常见现象发生的可能性进行简单分析和判别。通过这节课的学习能够让学生能根据自己的生活经验,体验有些事件的发生是确定的,而有些事件的发生是随机的,使学生能够正确区分身边的必然事件、不可能事件和随机事件,纠正学生对某些现象的错误认识,这也为后面进一步深入学习概率知识奠定了良好的基础。

  概率主要是研究现实生活中的随机现象,学习概率首先要弄清楚哪些现象是随机的,哪些现象又是确定的,所以,我认为本节课的重点是:区分不可能事件、必然事件和随机事件。七年级的学生正处于少年期,已具备一定的辨别和判断能力,能够对一些常见事件作出正确地判断,但由于受到生活经验和认知水平的限制,对于某些不常见事件还不能完全正确地认识,因此,我认为这一节课的难点应当是:正确地区分不可能事件、必然事件和随机事件。

  二、教学目标

  数学教学的基本出发点是促进学生全面、持续、和谐地发展,强调从学生已有的生活经验出发,让学生亲身经历探索过程。因此,结合本节课的内容特点和学生的认知背景,我把本节课的教学活动的目标拟定为这样的三个方面:

  (一)知识与技能目标:

  1、初步感受有些事件的发生是不确定的,有些事件的发生是确定的;

  2、会区分生活中的必然事件、不可能事件和随机事件。

  (二)过程与方法目标:

  作为一名数学教师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想,数学意识,培养学生的综合素质。因而,我把本节课的过程与方法目标拟为:

  1、经历猜测、试验、收集与分析试验结果的过程,让学生体验某些事件发生的随机性,同时学会与他人合作交流,敢于发表自己的观点。

  2、在与其他同学交流的过程中,能清晰地表达自己的思维过程。

  (三)情感与态度目标:

  1、在认识不可能事件、必然事件和随机事件的过程中,发展学生的随机观念,培养正确的价值观和人生观。

  2、在与他人的合作过程中,增强互相帮助、团结协作的精神。

  三、教法、学法

  教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。七年级学生的思维仍以经验性的逻辑思维为主,很大程度上仍需要依赖具体形象的经验材料来理解抽象的逻辑关系,故本节课采用“活动——参与法”,即按照“问题情境——实践活动——感受新知——归纳总结”的模式展开教学,在多个环节尽可能地让学生通过身心感受和利用经验来发展他们的随机观念,极力推行“做中学”,帮助学生由先动手后思考,逐步向先猜测再动手过渡。

  “教为不教,学为会学”;要“授之以鱼”,更要“授之以渔”。在教学活动中,关键是教学生学法。因此,本节课我准备指导学生采用:实验操作——收集数据——合作分析、处理数据——发现规律——归纳——应用的探究式的学习方法。为了更有效地开展小组活动,我打算将全班学生按4人为一组分成若干个学习小组,让全班学生都能积极、主动地参与到课堂活动中来。

  四、教学设备

  多媒体、实物投影仪、实物教具(甲、乙、丙3个完全相同的盒子、红球、白球、正方体骰子等)

  五、教学程序

  教学程序是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节课的教学内容及重难点,现对教学程序做一一分析。

  教学环节 教学流程 教学内容 设计意图

  创设情境

  在讲台上摆上甲盒子,将五个红球五个白球装入盒中(球除颜色外都相同,同时将放球过程完整展现在学生面前),将盒中的球摇匀。

  请几个学生到盒里摸一摸

  (1)从盒中任意摸出一球,一定是红球吗?说说你的想法。

  (2)摸几次试试看,每次都能摸出红球吗?

  (3)从盒中任意摸出两个球,一定都是一红一白吗?

  摸球游戏继续进行着,摸球的程序照旧,不过这次换了乙盒子,里面全是白球,学生并不知道。继续回答上述问题(1)(2)(3)

  如果换成装有全是红球的丙盒时,上述问题又该如何回答呢?

  此时揭示课题:确定与不确定

  让全班每个学生都参与到活动中来,虽说只有几位学生上讲台摸球,可这并不影响其他同学的热情,他们也在参与“猜”的活动,可以说通过这个游戏,全班学生的积极性都被调动起来了,并对不确定有了感性的认识。

  学生通过活动猜测出盒中全是白球,然后打开盒子验证他们的推理,让学生体验成功的喜悦,同时,也让学生对不可能事件有了认识。

  让学生对必然事件有了认识,在学生经历了猜测、试验、收集与分析试验结果、验证等活动过程,初步体验有些事件的发生是确定的,而有些事件的发生则是不确定的,从而引入新课。

  感受新知

  在上述活动中,事先能肯定它一定不会发生的有 ;

  事先能肯定它一定会发生的有 ;

  事先无法确定它会不会发生的有 。

  由此引入不可能事件,必然事件, 确定事件,随机事件等概念。

  我们的生活中有哪些事件是我们确定的?又有哪些事件是我们不确定的?

  学生经历了在摸球游戏中结果不尽相同的过程,透过现象看到本质,可以更好地理解概念,既避免了对概念的死记硬背,又使学生愿学、乐学。

  通过小组擂台赛的形式,充分调动学生的非智力因素,特别是内在动机,使他们能以强烈的求知欲和饱满的热情投入到学习中来,同时还可以让学生进行充分地交流,培养学生从不同的角度来观察这个五彩缤纷的世界。

  学以致用

  请指出下列事件中,哪些事件是必然事件,哪些是不可能事件,哪些是随机事件?

  (1)掷一枚均匀的骰子,骰子停止转动后6点朝上。

  (2)任意选择电视的某一频道,它正在播动画片。

  (3)下一届世界杯足球赛巴西队夺冠。

  (4)太阳从西边升起。

  (5)明天星期二。

  (6)今天星期一,明天星期二。

  (7)青蛙会用鳃呼吸。

  (8)纯铁放在水里1周会生锈。

  (9)据天气预报明天小雨,那么明天会下雨。

  (10)供电公司通知,明天电路检修,某小区停电,该小区明天一定会停电。下列事件中哪些事件是必然事件,哪些是不可能事件,哪些是随机事件?

  (1)367人中有2人的生日相同。

  (2)小明家将获得500万元彩票大奖。

  (3) 3天内将下雨。

  (4)妇幼保健院,下一个出生的'婴儿是女孩子。

  (5)你最喜爱的篮球队将夺得CBA冠军。

  (6)在标准大气压下,温度低于0℃时冰融化。

  (7)1+3>2

  (8)三角形三个内角的和是180度。

  (9)如果a,b都是有理数,那么ab=ba

  (10)两直线平行,同位角相等。

  在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么,该项比赛的

  (1)冠军属于中国吗?

  (2)冠军属于外国吗?

  (3)冠军属于中国选手甲吗?

  (4)如果最后进入决赛的是两名外国选手,那前面提出的3个问题的答案怎样?

  (5)如果最后进入决赛的是一名中国选手和一名外国选手呢?情况又会怎样?

  到医院去注射青霉素药水,医生都要先给你做皮肤试验,极少数人对青霉素药水过敏,大约在一千人里才有一个,医生为什么一定要这样做呢?

  下列成语、谚语、诗句中表示必然事件的是( ),表示不可能事件的是( ),表示随机事件的是( )(1)守株待兔 (2)拔苗助长 (3)一箭双雕 (4)巧妇难为无米之炊 (5)失败是成功之母 (6)近朱者赤,近墨者黑(7)滚滚长江东逝水(8)清明时节雨纷纷 (9)白发三千丈 (10)燕山雪花大如席

  掷骰子游戏:

  小组相互协作:先由一名学生掷骰子,再回答问题:

  (1)“掷得的数是奇数”是不可能发生的,因为骰子上不全是奇数,还有偶数;

  (2)“掷得的数是奇数”是必然发生的,因为骰子上有奇数;

  (3)“掷得的数不会超过7”是可能发生的,因为骰子上的数都没超过7。

  摸球游戏:

  规则:共有15个白球,5个红球.每次只能摸5个球,摸到5个红球为一等奖,摸到4个红球和1个白球为二等奖,依次类推。

  (1)学生动手摸奖,体会中奖的可能性。

  (2)设计游戏:你能仿照上面的游戏自己设计几个游戏吗?(一个是必然事件,一个是不可能事件,一个是随机事件)

  (3)至少摸多少个球,使“其中一定有白球”成为必然事件?

  犯人为什么要吞下“生死签”?

  在古代某地,有一县令用抽“生死签”的方法决定犯人的生死,有一犯人与该县令有私仇。县令为了报复他,偷偷在两张纸片上都写下了“死”字,聪明的犯人抽到一张后立即吞到肚子里,要求打开另一张,县令不得不把剩下的另一张公示于众,只好认定犯人吞下去的那张为“生”签,犯人得以死里逃生。你能用所学的知识说明犯人为犯人为什么要吞下“生死签”吗?

  对于概念的学习,要通过多次感知,不断强化,及时地辨别分析,才能真正领悟到概念的本质,作出正确的判断,这其中(5)、(6)两题,要注意比较、区别,(7)、(8)两题与学生的生活常识和生物知识有关,教师可适当加以解释,也可让学生课后查阅资料,(9)题中明天下雨是由当天的天气决定的,天气预报仅仅是对明天天气的预测,(10)题中小区停电是由供电部门决定的。

  巩固新知,深化学习内容,通过第(7)、(8)、(9)、(10)4小题让学生仿照再举几例,使学生认识到以前所学习的大量的公式、法则等一般来说都是必然事件。

  通过条件的不断变化,让学生发现必然事件,不可能事件,随机事件三者在一定条件下可以相互转化,引导学生体会概念中的“特定条件”,培养学生的辩证思维。

  用数学的眼光去看待生活中的问题,用数学的知识去解释、分析生活问题,培养学生用数学的意识。

  既可以陶冶学生的情操,体现了学科渗透,又锻炼了学生能在复杂的情境中正确判断出各类不同的事件,培养了学生分析问题的能力。

  培养学生的实际操作能力及小组相互协作的能力,并帮助学生澄清一些模糊认识,培养学生思维的深刻性。

  设计学生非常感兴趣的摸奖活动,既能加深对三种事件的理解,又能调动学生的积极性,活跃课堂气氛,同时也为下面学习可能性大小埋下伏笔。

  用故事的形式易激起学生的好奇心,通过解释犯人的行为,培养学生分析问题、解决问题的能力。

  分享收获 1.你对确定与不确定有什么认识?

  2.你还有什么疑惑或没有弄懂的地方?

  3.你还有什么想法和建议? 给学生充分展现自我的机会,鼓励学生多思、多想、多说,注重学生相互评价方式的运用。

  作业设计 1.用适当的语言来表示下列词语所反映的事件发生情况?

  东边日出西边雨 十拿九稳 大海捞针 海枯石烂

  2.现有6个球,3个红和3个白,这6个球除颜色外完全相同,请设计一个袋中摸球游戏,使得:

  (1)任意摸出1个球,一定是红球;

  (2)任意摸出2个球,一定都不是红球;

  (3)任意摸出2个球,一定是1个红球,一1个白球;

  (4)任意摸出3个球,可能是2个红球,1个白球。 分层次设计作业

  本题是道开放性试题,有的设计方案可以多种多样,重在培养学生逆向思维的能力,同时也给学有余力的同学一个施展才华的空间,让不同的学生在数学上有着不同的发展,符合新课程改革的精神。

  附:板书设计

  确定与不确定

  不可能事件

  确定事件

  必然事件

  随机事件---不确定事件---可能会发生,也可能不会发生

  三种事件在一定条件下可以相互转化

七年级数学说课稿7

  一、教材分析

  (一)教材的地位和作用

  方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材。本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭。

  (二)教学内容

  “从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步。然后再通过具体实际问题所列方程,介绍方程等概念。新教材的编写更加体现了数学的应用价值。

  (三)教学重点难点

  由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立。而本节中学生可能感到困难的仍是实际问题相等关系的建立。

  二、目标分析

  依据课程标准的要求,确定以下目标:

  (一)知识与技能目标

  1。了解方程等基本概念。

  2。会根据具体问题中的数量关系列出方程。

  (二)过程与方法目标

  经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想。

  (三)情感目标

  让学生进一步认识到方程与现实世界的密切关系,感受数学的价值。培养学生获取信息,分析问题,处理问题的能力。

  三、教法与学法分析

  根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情。并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变。

  四、教学过程分析

  教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

  ②初步具有解方程中的化归意识;

  ③培养言必有据的思维能力和良好的思维品质。

  教学重点用等式的性质解方程。

  知识难点需要两次运用等式的性质,并且有一定的思维顺序。

  教学过程(师生活动)设计理念

  复习引入解下列方程:

  (1)x+7=1.2;

  (2)在学生解答后的讲评中围绕两个问题:

  ①每一步的依据分别是什么?

  ②求方程的解就是把方程化成什么形式?

  这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。

  探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?

  例1利用等式的性质解方程:

  0.5x-x=3.4(2)

  先让学生对第(1)题进行尝试,然后教师进行引导:

  ①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?

  ②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?

  然后给出解答:

  解:两边减0.5,得0.5-x-0.5=3.4-0.5

  化简,得

  -x=-2.9

  两边同乘-1,得

  x=-2.9

  小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化。

  你能用这种方法解第(2)题吗?

  在学生解答后再点评。

  解后反思:

  ①第(2)题能否先在方程的两边同乘“一3”?

  ②比较这两种方法,你认为哪一种方法更好?为什么?

  允许学生在讨论后再回答。

  例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米。现已做了80套成人服装,用余下的布还可以做几套儿童服装?

  在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?

  解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得

  80x×3.5+1.5x=355

  化简,得

  280+1.5x=355

  两边减280,得

  280+1.5x-280=355-280

  化简,得

  1.5x=75

  两边同除以1.5,得x=50

  答:用余下的布还可以做50套儿童服装。

  解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

  问题:我们如何才能判别求出的答案50是否正确?

  在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355

  方程的左右两边相等,所以x=50是方程的解。

  你能检验一下x=-27是不是方程的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的'老师讲解更能激发学生的积级性。

  这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。

  解题的格式现在不一定要学生严格掌握。

  课堂练习①教科书第73页练习第(3)(4)题。

  ②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)

  建议:采用小组竞赛的方法进行评议

  小结与作业

  课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:

  (1)这节课学习的内容。

  (2)我有哪些收获?

  (3)我应该注意什么问题?

  ②教师对学生的学习情况进行评价。

  ③思考题用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。

  本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3

  ②选做题:教科书第73页第4(3)题,第74页第10题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点。

  2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识。新课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式。本设计在这方面也有较好的体现。

  3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线。对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点。本设计充分体现了这一特点。

七年级数学说课稿8

各位老师:

  大家好!今天我说课的题目《整式的加减》第1课时。

  一、教材分析:

  本课选自新人教版数学七年级上册第二章第二节第一课时,是学生进入初中阶段后,在学习了单项式、多项式以及有理数运算的基础上,对同类项进行辨别、探究、合并的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上,可以说合并同类项是有理数加减运算的延伸与拓展。因此,这节课是一节承上启下的课。

  二、学情分析:

  学生已经学了有理数的运算、单项式和多项式等内容,具备了学习本节所必须的基本运算技能。在相关知识学习的过程中,学生已经经历了一些通过代数式的运算来解决问题、进行推理的活动,能解决一些简单的现实问题,具有一定的运算能力;同时在以前的数学学习中,经历了很多合作学习、互助学习的过程,具备了一定的合作和交流的能力。

  三、教学目标

  1.知识目标

  使学生理解多项式中同类项的概念,会识别同类项,掌握合并同类项的法则;利用合并同类项法则来化简整式。

  2.能力目标:

  在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

  3.情感目标

  激发学生的求知欲,培养独立思考和合作交流的能力,让他们学会分享成功的喜悦。

  四、教学重点、难点

  重点:了解同类项的概念,掌握合并同类项的法则。

  难点:正确判断同类项;准确合并同类项。

  五、教学过程

  1.创设情境:先用课件展示三类生活中的常见事物,让学生加以分类,再让学生根据自己的`生活知识回答问题、列举生活中的分类。这样设计的意图是以具体生活经验为背景,有效的吸引学生的注意力,增强好奇心及求知欲。

  2.形成概念:让学生在下列单项式中找出具有共同特征的单项式,进行分类.并说说自己的理由.

  指导学生先观察各式,再分组讨论他们的共同特点。然后思考:归为同类需要有什么共同的特征?这时教师可以引导学生看书,让学生理解同类项的定义。

  这样设计可以让学生充分发挥主体作用,从自己的视角去观察、归纳、总结得出同类项的概念。有利于培养学生的观察、自主探索和合作交流的能力。

  3.强化概念:下列各组中的两项是不是同类项?说明理由。

七年级数学说课稿9

各位评委老师们:

  大家下午好!今天我说课的内容是人教版初中数学七年级下册第八章第一节二元一次方程组。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识和理解。

  一、说教材分析

  1.教材的地位和作用

  二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

  2.教学目标

  知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

  能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

  情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

  3.重点、难点

  重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

  难点:在实际生活中二元一次方程组的应用。

  二、教法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

  三、学法

  “问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

  四、教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1)复习旧知,温故知新

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2)创设情境,提出问题

  这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

  由问题知道,题中包含两个必须同时满足的条件:

  胜的场数+负的场数=总场数,

  胜场积分+负场积分=总积分。

  这两个条件可以用方程

  x+y=22

  2x+y=40

  表示:

  上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

  把两个方程合在一起,写成

  x+y=22

  2x+y=40

  像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

  (3)发现问题,探求新知

  满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

  x

  y

  上表中哪对x、y的值还满足方程②。

  一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

  二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

  设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在

  这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4)分析思考,加深理解

  例1(1)方程(a+2)x+(b-1)y=3是二元一次方程,试求a、b的取值范围。

  (2)方程x∣a∣–1+(a-2)y=2是二元一次方程,试求a的值.

  例2若方程x2m–1+5y3n–2=7是二元一次方程.求m、n的值。

  例3已知下列三对值:

  x=-6x=10 x=10

  y=-9y=-6y=-1

  x-y=6

  2x+31y=-11

  (1)哪几对数值使方程x-y=6的左、右两边的值相等?

  (2)哪几对数值是方程组的解?

  例4求二元一次方程3x+2y=19的正整数解。

  设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。

  (5)强化训练,巩固双基

  课堂练习:

  教科书第102页练习

  习题8.11、2题

  设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

  (6)小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这么三个问题:

  ①通过本节课的学习,你学会了哪些知识;

  ②通过本节课的学习,你最大的体验是什么;

  ③通过本节课的学习,你掌握了哪些学习数学的方法?

  (7)布置作业,提高升华

  教科书第102页3、4、5题。

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的`设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

  五、评价与反思

  本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

  1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

  2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

  3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。

七年级数学说课稿10

  今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对本节课的教学设计进行说明:

  一、教材分析

  (一)地位、作用

  本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。

  (二)、教学目标

  根据学生已有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:

  1、知识与技能

  (1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

  (2)掌握“对顶角相等的性质”。

  (3)理解对顶角相等的说理过程。

  2、过程与方法

  经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。

  3、情感态度和价值观

  通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

  (三)重点,难点

  根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:

  重点:邻补角和对顶角的概念及对顶角相等的性质。

  难点:写出规范的推理过程和对对顶角相等的探索。

  二、教学方法

  在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。

  三、学法指导

  让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的`良好的学习习惯。

  四、学情分析

  七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。

  五、教学过程

  (一)创设情景,引入新课

  多媒体显示立交桥、防盗网。

  设问:从这些图片得出什么几何图形?学生会指出:相交线。从而引出了课题:相交线。让学生借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。

  (二)新课探讨

  1、对顶角、邻补角的位置关系。

  让学生用已备好的剪刀剪纸片、向他们提出以下问题:

  问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?

  学生观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。

  通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。

  问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?

  学生以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生分析问题,以至解决问题,体现了新型的课改精神。

  2、对顶角的大小关系

  学生根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生的猜想得于肯定,我的做法如下:

  (1)我演示教具(自己制作),也给学生操做。

  (2)让学生通过量角器测量。

  (3)让学生把画好的对顶角剪下来,进行翻折。

  (4)引导学生根据同角的补角相等来推导对顶角相等的性质。

  引导他们写出推理过程后,我在黑板上板出规范的过程。学生通过观察,比较,找出自己写的和老师写的有哪些异同点。

  学生的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生的思考、培养学生的逻辑思维能力以及严谨的治学态度,使学生初步养成言之有据的习惯。

  (三)让学生举出生活中对顶角相等的例子

  学生可以通过合作性交流、思考、发表见解。

  让学生举出生活中对顶角相等的例子,使学生进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。

  (四)例题解析

  例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。

  引导学生先寻找已知角和未知角之间的位置关系,再寻找已知角和未知角之间的数量关系,此题难度不大,让一位学生在黑板上板演。其他同学一起来批改。

  (五)习题反馈

  为了再次强化对顶角、邻补角的概念及对顶角性质的理解,我适当增加些练习,对于习题,循序渐进提高难度,让不同层次的学生都得于提高,对于趣味题和拓展题,学生通过思考,讨论,寻找规律,让他们进一步感觉“知识来源于实践”,同时学生的思路得于拓展。

  (六)、课堂小结

  1、这节课学了哪些概念和性质?

  2、你还有什么疑惑?

  3、谈谈你对本节课的收获。

  将本节课所学知识进行回顾和梳理,进一步培养他们归纳,总结能力。

  (七)布置作业

  我布置了必做题和选做题,为学生提供个性化发展的空间,及时了解学生的学习效果,使学生养成独立思考,反思学习过程的习惯。

  六、板书设计(略)

七年级数学说课稿11

  一、教材分析

  ㈠地位、作用

  本节课在学习了单项式、多项式及其有关概念之后,以同类项的概念、合并同类项的法则及其运用为教学内容.合并同类项是整式运算的基础,而整式的运算对学好初中数学有着十分重要的作用.

  ㈡教学目标

  ⒈知识目标:①理解同类项的概念,并能辨别同类项;②掌握合并同类项的法则,并能熟练运用.

  ⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力.

  ⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育.

  ㈢重点、难点

  重点是同类项的概念、合并同类项的法则及其运用法则进行计算.

  难点是同类项定义的归纳、概括.

  二、教法

  根据本节教材内容和学生的实际水平,为更有效地突出重点、突破难点,按照学生的认识规律,遵循“教师为主导、学生为主体、训练为主线”的指导思想,我将采用探究发现法、多媒体辅助教学等方法,教学中精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,并适时运用多媒体演示,激发学生探索知识的欲望,以此来达到他们对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力.

  三、学法

  根据学法自由性原则,让学生在教师创设的问题情景下,通过教师的启发点拨,在学生的积极思考努力下,自由参与知识的发生、发展、发现的过程,使学生掌握知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的.

  四、教学程序

  ㈠新课引入

  新课的开始,是课堂教学的一个重要环节.如果在新课伊始能吸引学生的注意力,引起他们浓厚的兴趣,激发强烈的求知欲望,就可以使学生愉快而主动地去接受新知识,从而取得课堂教学的理想效果.所以一开始上课,我用大屏幕显示一道实际生活中的问题,学生通过探究讨论解决问题,由此导出本节课的主题,同时为学习新课做好铺垫.

  ㈡探索新知

  本节课第一个重要环节是同类项的概念,既是重点也是难点.为突出重点,突破难点,我设计了活动1:学生仔细观察、独立思考后,分组讨论,互相交流,然后每组派一名代表发言,概括这两组单项式的特征.教师倾听学生交流,在学生概括出上述几组单项式的特征之后,提出同类项的概念,再由学生概括出同类项的定义.由教师补充:几个常数项也是同类项.这样,学生直接参与到同类项概念产生的过程,不仅能够有效地促使学生理解同类项的含义,而且能使学生体验获得成功的喜悦,同时培养和提高学生归纳、抽象概括的.能力.

  为巩固同类项的概念,我设计了一道判断题,由学生一个个单独完成,并简单阐述理由,让学生充分发表意见,关注每一个学生.通过这个活动加深对同类项概念的理解,为后面合并同类项打好基础.

  另外还设计一道开放性题目,让学生自己动手写出两组同类项,组内交流写出的项是否符合要求,教师深入学生中间,参与指导,帮助加深理解同类项的含义,扩展学生的思维空间,培养学生的抽象思维能力和发散思维能力.

  第二个重要环节是合并同类项的法则.通过设计问题串,引导学生获取新知.问题1,实际上是引例中的两个等式,通过学生观察,容易得出结论,左边两项系数之和等于右边的系数,明确同类项相加成为一项的方法,使学生对合并同类项有个初步认识.为克服学生对这个认识可能存在的疑点,我设计了问题2,学生展开讨论,教师深入学生中间,参与学生讨论,指导学生探究,验证上述认识的正确性,体现了获取知识不仅要有观察、归纳、猜想过程,还必须有验证过程.打消疑点之后,提出问题3,有上面两个问题做基础,学生极易回答这个问题,教师抓住时机,让学生总结概括合并同类项的法则,再次培养和提高学生的归纳概括能力.

  ㈢巩固新知

  在这个环节中我设计了三道题.

  第一题:学生判断、理解只有同类项才能合并,教师加以指导.本次活动中,教师应重点关注①学生对同类项的概念是否混淆不清,能否正确辨别问题.②是否在正确辨别后只重视系数而忽略了字母和字母的指数.③对一些同类项的变式能否正确的辨别.通过这道练习,培养学生运用知识的能力,进一步巩固同类项的含义和合并同类项的方法,为本节课的应用做好铺垫.

  第二题:是一道实际应用题.学生小组讨论、交流,首先明确要解决什么问题,并围绕这个问题开展探究,寻找解决问题的方法.教师引导学生观察,帮助学生展示大小两个长方体纸盒的模型,并深入小组,倾听学生交流,指导学生探究.学生在掌握同类项的概念和合并同类项的法则后,通过解决一个实际问题,体现了“学数学、用数学”的基本理念,并让学生体会到数学是解决实际问题的重要工具,增强应用数学的意识.

  第三题:把学生分为两组,一组直接代入计算,另一组先化简再代入计算.通过比较让学生充分认识新知识的优越性,能够使学生积极主动运用新知识解决问题.

  ㈣课堂小结

  学生分组讨论、归纳,学生代表发言.教师倾听,并对学生发言给予充分鼓励和肯定,调动学生主动参与的意识,让学生感受到集体合作的重要性.

  ㈤布置作业

  为减轻学生的课业负担,从课本中调选了两道题.第一题是合并同类项,既能巩固同类项的概念,又可利用合并同类项的法则进行计算,起到巩固新课的目的.第二题是实际应用题,进一步培养学生运用所学知识解决实际问题的能力,增强运用数学意识.学生通过独立思考,完成课后作业,老师批改,做好批改记录,及时反馈学生学习的效果,便于进行课堂教学优化.

  ㈥板书设计

  体现了新知识的产生过程,便于学生理解掌握知识,并加深记忆.

  五、教学评价

  整个教学过程遵循“由特殊到一般、再由一般到特殊”这一认识规律,教师始终是学生学习活动的引导者、激励者、协调者、服务者,给学生留出足够的活动时间与空间,设计的各个教学环节有利于引发学生的学习兴趣,有利于学生由浅入深、循序渐进地掌握知识,形成能力,获得技巧,使他们在主动探索发现之中建构自己的知识,形成素质.

七年级数学说课稿12

各位领导、评委:

  大家好!我来自XX学校,我叫XX,今天我说课的内容是新人教版七年级下册第六章《平面直角坐标系》第二节中的第二个问题《用坐标表示平移》。

  下面我将从教材分析、教学目标、设计思路、教学过程和教学反思五个方面来谈一下我对这节课的认识。

  一、教材分析

  1、教材的地位和作用

  本节课主要是探究点在平面直角坐标系中平移所引起的点坐标的变化规律。是在上一章学习了点和图形平移及其性质的基础之上,用坐标刻画了平移变换,从数的角度进一步认识了平移变换,这就是用代数方法研究几何问题,体现了平面直角坐标系在数学中的作用。为后续学习利用平移变换、坐标变换探究几何性质以及综合运用多种变换(平移、旋转、轴对称、相似等)进行图形设计打下基础。

  2、教学重点、难点

  通过分析,我们看到“用坐标表示平移”在教材中起到承上启下的作用,有着广泛的应用,因此本节课的重点是在平面直角坐标系中,探究点的平移引起的对应点坐标变化的规律。对应点的坐标变化规律的获得过程,教科书中仅用了点平移、图形平移两个栏目,来呈现平移引起点坐标变化规律的。规律不能让学生死记硬背,而是让学生通过观察、分析、归纳的途径来掌握规律。因此本节课的难点设定为在坐标系中结合点的平移变换理解和归纳对应点的坐标变化规律并进行应用。

  二、教学目标

  根据学生的认知水平和本节课的教学内容及蕴含的数学思想我制订了以下三个层面的目标:

  1、知识目标

  (1).了解坐标平面内平移点的坐标变化规律;

  (2).能够利用点的坐标的变化规律写出平移变化后点的坐标。

  2、过程与方法

  (1).通过坐标平面内点的坐标平移变化情况,进一步发展学生抽象概括的能力;

  (2).通过坐标表示点的平移,体会数形结合的思想。

  3、情感、态度与价值观

  在坐标系中,通过对点的坐标的平移变化的探究,培养学生合作交流的意识和探索精神。

  三、设计思路

  本节课,我设计了一个以PPT为操作平台的课件,来实现教学目标,完成教学任务。我之所以选择PPT来制作这个课件主要考虑了两点原因:

  1、就课的内容来说,这节课主要学习点在坐标系内平移引起的坐标变化的规律。如果单纯的让学生观察静止的图形、图片,很难激起学生主动探索的热情;多媒体课件能逼真的模拟出图形平移的全过程,从而把复杂的东西变简单,抽象的东西变具体,对教学起到一定的帮助作用。

  2、本节课主要以学生在平面直角坐标系内描点、进行平移变换、判断点的坐标来发现规律,靠反复的练习来巩固所学,这就需要有充足的时间来保证教学任务的'完成,而多媒体课件恰好能节省一部分时间,从而最大程度的提高了教学效果。

  四、教学过程

  (一)创设情境,引入新课

  活动1:

  (1)观看短片,进一步体会生活中的平移现象。

  (2)欣赏同学们在学习平移后创作的作品。

  (教师播放短片和学生作品的图片,并提出问题;学生欣赏、观察、思考、回答老师提出的问题。)

  (意图:通过火箭发射,吸引学生的注意力,在学生原有的认知结构基础上,回顾平移的内容。再通过欣赏学生作品,引发学生思考如何使所画图案中的平移更准确,以此引入课题,让学生感受到把平面直角坐标系引入图形变换的重要性和必要性。)

  (二)交流操作,探究新知

  活动2:

  探索点的坐标变化与平移间的关系

  (1)教师利用课件动态演示小车移动的过程,提出问题,引发学生的求知欲与探索精神。

  (2)学生观察、思考、动手操作、探究点的坐标变化与平移间的关系。

  (意图:①结合七年级学生的好奇、好学、好动的特点,以动画为载体,展开所要研究的问题,进一步激发学生的求知欲。②采用观察、思考、动手操作、探究的学习方法,让学生经历一个由特殊到一般的归纳过程,让他们在参与中体验,在活动中发展,并总结发现的规律。)

  活动3:

  教师与学生共同倾听部分学生的发言,总结出点的坐标变化与平移间的关系,并板书在黑板上,使点的坐标变化与平移间的关系更加直观明确。

  规律:在平面直角坐标系中,将点P(x,y)向右(或左)平移a个单位长度,可以得到对应点(xa,y)(或(x-a,y));将点P(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,yb)(或(x,y-b)。

  (意图:①通过学生自主归纳,鼓励他们在探究发现的基础上敢于发表自己的见解,在互相提问中交流与提高。②通过参与对数学问题的讨论,锻炼学生的表达能力,培养学生的合作意识。)

  (三)巩固练习,提高应用

  活动4:

  出示习题,引导学生练习解答。(投影展示)

  (意图:通过几个问题的解决,使学生加深对所学知识的理解和掌握,提高学生的思维能力和运用知识解决实际问题的能力。)

  (四)课堂小结,升华知识

  活动5:

  师生共同归纳本节课所学知识。

  (意图:使学生能回顾总结梳理所学的知识,养成归纳梳理知识的良好习惯。)

  (五)布置作业

  1.必做题:教材P55第1题;P56第4题;

  2.选做题:教材P55第2题

  (意图:学生根据自己的水平选择,使“不同的人在数学上得到不同的发展”。)

  五、教学反思

  本节课是在学生学习了平移的概念和性质的基础上,探究图形在坐标系内平移的变化规律的。主要是引导学生运用分类思想,依次经过点的平移的观察、画图、猜想、验证、归纳、比较、分析等活动,最终探究出点的坐标变化与点平移的关系,并结合多媒体课件演示,体验坐标平面上点与有序数对一一对应的关系。感受主要有三点:

  1、内容处理上,注意了新旧知识间的联系又注意了新旧知识间的区别。顺利的完成了知识的迁移。

  2、课堂教学中,为学生提供了充分的探索空间,注重引导学生独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛。

  3、注重学法指导,本节课通过学生一系列的探究活动完成学习过程,让学生经历观察、探索、操作、分析、归纳总结的一个过程,经历知识产生、运用、升华的过程,自主的完成本节课的学习。

  以上是我对这节课的教学设想,由于时间仓促以及对学生不是很了解,准备也不是很充分,恳请各位评委批评指正。

七年级数学说课稿13

  一、授课内容的数学本质与教学目标定位

  教学内容:

  本节课是北师大版教材七年级(下)第七章《生活中的轴对称》第二节“简单的轴对称图形”的第一课时.主要内容是经历探索简单图形轴对称性的过程,进一步体验轴对称图形的特征,并由此探索了解角平分线的有关性质,应用角平分线的性质解决一些简单问题.

  教学目标:

  ●知识与技能:

  (1)进一步认识轴对称图形的特点,认识角是轴对称图形;

  (2)探索并了解角平分线的有关性质;

  (3)能应用角平分线的性质解决一些简单的问题.

  ●过程与方法:

  (1)在探索角平分线性质的过程中,培养学生观察、思考、分析和概括的能力;

  (2)在动手操作的活动中,通过说理,培养学生运用数学语言进行表述的能力;

  (3)通过学习进一步理解由“特殊”到“ 一般”的数学思想.

  ●情感与态度:

  (1)通过轴对称图形的教学进行审美教育,让学生充分感受数学美,从而激发学生热爱数学的情感;

  (2)通过探究活动培养学生团结协作的精神.

  二、教材的地位及作用

  本节教材是在学生对轴对称现象有了一定认识,能够识别简单的轴对称图形及其对称轴的基础上,经历探索的过程,掌握角平分线的有关性质,为以后学习其他轴对称图形(矩形、正方形、菱形等)知识奠定必要的基础.

  三、教学诊断分析

  1.在学习有关角的对称轴是角平分线所在直线的时候,学生常常将角平分线理解成角的对称轴,因此,在本节课的教学过程中作了特别强调;

  2.运用角平分线的性质解决问题时,学生常常会运用全等将角平分线的性质再证明一次,而没有直接使用角平分线的性质,简化证明过程,因此,在本节课通过例题及巩固练习,加深学生对角平分线性质的运用.

  四、教学设计说明

  1.根据新课程课堂教学理念“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验” .本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和生生、师生互动交流,从而使学生能很好地掌握角平分线的性质,并获得用折纸这样的操作发现法探究图形性质的活动经验.

  2.在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况(学生比较优秀),因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练中学会运用角平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”的数学课程基本理念.

  3.本节课在教法上选用了“探究——发现”教学模式,这是基于本节课的知识内容,有实践背景,适用于让学生动手操作探究.因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:①动手活动:通过动手度量、折纸等活动,探索角平分线的.性质;②表述活动:用文字语言、图形语言、符号语言表述角平分线的性质,并互动说理证明;③应用活动:角平分线的性质的认识及应用;④拓展活动:结合本节课的知识,对线段的轴对称性进行探索.

  4.教材中只给出了角平分线的性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理,因此在这里,我引导学生将文字语言结合图形语言转化为符号语言,并且对性质进行了说理,同时在对性质说理以及例1的解答中,教师都给出了规范的说理过程,这样既符合学生的实际学习情况,又为后面学习证明(一)、(二)、(三)打下基础.

  5.评价方式

  根据课标的评价理念,教学中我关注了学生在学习过程中是否积极参与教学活动,是否能在教师的引导下进行说理,是否能应用所学知识来解决实际问题,并注意在教学过程中给予学生适当的评价和鼓励.

七年级数学说课稿14

  我说课的内容是北京师范大学出版社义务教育课程标准实验教科书——七年级上册第五章一元一次方程第八节——教育储蓄。因为《教育储蓄》是在新课标理念下能够体现学生自主学习、合作学习、创造学习的一节课,所以我选择本节课作为说课内容。我将以教材分析、教学策略、教学过程三个部分加以阐述。

  一、教材分析。

  1、地位及作用。

  本节课是一元一次方程这一章的最后一节课,是在会解一元一次方程的基础上,研究以教育储蓄为背景的应用问题,对解决储蓄问题有启蒙作用,对其他知识有触类旁通的应用。为学生初中阶段学好必备的数学基础知识与基本技能打下良好的基础,在经历建立方程模型解决实际问题的过程中,体会方程在数学上的应用价值。

  2、教学目标。

  (1) 知识与技能目标。

  了解储蓄有关知识,掌握利息的计算方法,能运用计算器处理实际问题中的复杂数据,能运用方程对储蓄问题做出科学的决策,渗透分类讨论的数学思想方法。

  (2) 数学思考目标。

  经历猜想、推理、验证、反思等过程,领悟到利用方程解决实际问题的关键是找“等量关系”。

  (3) 解决问题目标。

  培养用方程解决实际问题的应用意识,形成解决储蓄问题的一些基本策略,学会理财,在调查及问题解决中发展实践能力、合作能力及交流表达能力,培养创新意识。

  (4) 情感与态度目标。

  认识到数学与人类生活的密切联系,锻炼克服困难的意志,感受到国家对人才的重视,激励学生立志成才,报效祖国的强烈愿望。

  3、教学重点与难点。

  (1)教学重点是理解储蓄问题中几个基本量之间的联系,从中找到等量关系,列出方程。

  (2)教学难点是如何找到正确的等量关系。

  二、教学策略。

  1、教材处理。

  本节课与前面所学应用题相比,特点及解决方法是(1)本节应用题的背景与学生的生活接触不多,有一定距离,故采取实践调查、动画片引入例题、填写存款单等形式,调动学生学习兴趣,使学生真正接触储蓄。(2)数据较大,可以运用计算器进行计算。(3)等量关系不易寻找,利用表格分析,加强小组合作学习。

  2、教法与学法。

  (1)教法:图表分析法、启发式教学法。

  (2)学法:实践调查、自主探索、合作交流

  在教学过程中,我将对教法与学法进一步详细阐释。

  3、教学手段。

  运用多媒体辅助教学,通过图表使学生更直观、更快捷地找到等量关系,从而降低理论教学的难度和分量,提高课堂教学效益。

  三、教学过程。

  本节课是通过五个教学活动展开的。

  (一)活动一:创设情境,引入新课。

  学生欣赏一组大学的图片。教师通过数据分析,即大学学费与我国农民年平均纯收入的比较,提出问题,引出本节课所要研究的'内容。

  (目的是调动学生学习兴趣和求知欲,激励学生立志成才的强烈愿望。)

  (二)活动二:实践应用,掌握重点。

  根据学生生活常识和休息日亲自到银行收集的资料找小组代表汇报,其它小组代表补充,教师再利用多媒体演示的方式出现相关概念和公式,其中最为重要的两个公式,教师板书在黑板上,作为解决储蓄问题的公式。从中让学生对储蓄特别是教育储蓄的相关知识有了更进一步了解。

  (目的是让学生感知生活,体会数学与现实生活的密切联系,有助于学生了解储蓄的有关知识,掌握利息的计算方法,通过调查汇报,发展其实践能力、综合归纳整理问题的能力及交流表达能力,为教学做好铺垫。)

  然后出示两个口算列式题,让学生会利用储蓄公式求解。

  (目的是降低课堂教学难度,通过对解决问题的反思,获得解决问题的经验,从而为例题的学习打好基础。)

  (三)活动三:突出重点,突破难点。

  多媒体演示动画片,先让学生猜想问题答案,然后出示例题并引导学生探讨问题的解决办法。

  对问题:

  (1)可引导学生自主完成;对比较复杂的问题。

  (2)教师首先鼓励学生独立思考求解,在思考困难的情况下,让学生回忆前面所学内容,当等量关系不易找到时,可以采取哪些方法,学生想到列表法,教师提供表格,学生填表,教师适时加以引导。对于本息和一格中,学生会有两种填法,这主要是由于学生思路不同,得到的表达式也不同,教师应鼓励学生这种发散思维能力。对列表法找等量关系还有困难的学生,进行组内合作交流,从而找到等量关系,列出方程。

  (目的是:1.要求学生认真读懂题目,寻找反映题目全部含义的相等数量关系。2、必须根据活动二[即板书内容]找到的公式来列方程,通过自主学习,组内交流合作达到培养学生自立、合作的精神。3、利用表格寻找等量关系,形成解决储蓄问题的一些基本策略,锻炼学生克服困难的意志)

  在方程列出后,解方程的过程中,由于数据较大,可以引导学生运用计算器计算。

  (目的是:在满足学生多样化的学习需要的基础之上,进一步提高学习效率,使学生能运用计算器处理实际问题中的复杂数据。)

  通过(1)、(2)两个问题答案的比较让学生学会选择最理想的方法进行储蓄,学会理财。

  (目的是:渗透分类讨论的数学思想方法,能运用方程对储蓄问题作出科学的决策。)

  本次活动主要是以学生为主体,采取“猜想――独立思考――合作讨论――独立求解――学生作为小先生板书、讲解――反思”的方法,教师作为知识的引导者还课堂给学生,使学生充分交流思想,更有助于学生学习过程的评价,关注他们的学习过程,从而发展学生解决实际问题的能力,使学生经历猜想、推理、验证、反思等过程,发展合作能力及交流表达能力。

  (四)活动四:随堂练习,评价学习。

  练习1:小试身手。

  课前发给每名学生一个存款单,让他们以例题中所得的数据为本金,为自己填写存款单,利用实物投影给大家展示,教师进行表扬,使学生真正接触储蓄,学会理财。

  练习2:挑战自我。

  出示一道与例题相仿的练习题,使学生加深对本课的理解和掌握。感受到国家对人才的重视,激励学生报效祖国的强烈愿望。

  练习3:再上颠峰。

  出示一道有关利息税的填空题,使学生举一反三,能够学以致用,让学有余力的学生有更多的收获。

  (练习的设置由浅入深,符合学生认知规律,对学生学习结果的评价,教师可以调控掌握)

  (五)活动五:反思总结,学以致用。

  教师引导学生做出本节课小结,归纳简单的储蓄知识,说出本节课的收获。

  (目的是:通过对解决问题过程的反思,获得解决问题的经验,从而提高学习效率)

  (五)布置作业:

  (1)书本作业:175页习题5。11的1、2题。

  (2)实践作业:与你的父母讨论,为自己或家里的某项储蓄或贷款设计一个最佳方案。并填写成长记录卡。

  (目的是:在于检验学生对本节内容的理解和运用程度;实践作业的设置培养学生创新意识,把本节课所学应用到现实生活中去。)

  以上是我对这节课的全部说课内容,望各位专家、老师给予批评指正,提出宝贵意见。谢谢!

七年级数学说课稿15

  说教材分析

  本章主要内容包括:不等式的有关基本概念,不等式的性质,一元一次不等式(组)的解法,利用不等式(组)解决实际问题和课题学习。此部分内容是在学生已经学过的方程(组)的基础上,进一步讨论不等式,教材首先从数量大小之分说起,这是人们熟知的客观事实。由大小,就有相等或不相等,例如,在引言中给出的不等式2+3>1+3,a+bc等,用等式可以研究相等关系,要研究不相等关系,也需要专门的数学工具,这就是不等式。

  说教学目标

  1.知识与能力

  感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发的寻找不等式的解,会把不等式的解集正确的表示在数轴上。

  2.数学思维

  经历由具体实例建立不等式模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想。

  3.情感态度与价值观

  引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识,让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

  说教学重点与难点

  1重点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确的表示在数轴上。

  2.难点:正确理解不等式解集的意义。

  说教学方法:探究、合作、质疑

  说教具:三角尺、多媒体课件

  说教学过程

  一、创设情境,提出问题。

  多媒体展示

  问题1:一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?

  问题2:元宵佳节,在燃放各种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域。已知导火线的燃烧速度为0.02米/秒,人离开的速度为4米/秒,那么导火线的`长度应为多少厘米?

  设计意图:通过实例创设情境,培养学生观察能力,激发他们的学习兴趣。

  二、合作探究新知

  (一)不等式、一元一次不等式的概念

  学生活动:学生与同伴交流,小组展开讨论,在学生发表自己意见的基础上,归纳结论。

  设计意图;引导学生仔细观察并归纳不等式的定义,从而引出一元一次不等式。

  多媒体演示:

  下列式子中哪些是不等式?哪些是一元一次不等式?

  (1)a+b=b+a(2)-3<2(3)x≠1

  (4)x+3>6(5)2+1<3+5(6)2<5-x

  (二)不等式的解、不等式的解集。

  多媒体展示

  问题1、要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?

  问题2、车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?

  问题3、我们曾经学过使方程两边相等的未知数的值就是方程的解,我们也可以把使不等式成立的未知数的值叫做不等式的解,刚才同学们所说的这些数哪些是不等式2/3x>50的解呢?

  问题4、判断下列数中哪些是不等式2/3x>50的解:

  76,73,79,80,74.9,75.1,90,60

  你能找出这个不等式其它的解吗?它到底有多少个解?你从中发现了什么规律?

  学生活动:让学生通过计算,动手验证,动脑思考,初步体会不等式解及其解集的意义,再归纳结论。

  设计意图:遵循学生的认知规律,有意识,有计划,有条理地设计一些引人入胜的问题,可让学生始终处在积极的思维状态,不知不觉中接受了新知识,分散了难点。

  (三)不等式解集的表示方法

  1.教师示范

  2.多媒体展示

  设计意图:教师示范,渗透着数形结合的思想方法,为后续学习作了铺垫。

  三.巩固新知

  多媒体展示

  1.下列数值哪些是不等式x+3>6的解?哪些不是?

  -4,-2.5,0,1,2.5,3,3.2,4.8,8,12

  2.用不等式表示:

  (1)a是正数(2)a是负数

  (3)a与5的和小于7(4)a与2的差大于-7

  (5)a的4倍大于8(6)a的一半小于3

  3.直接想出不等式的解集,并在数轴上表示出来。

  ;(1)x+3>6(2)2x<8(3)x-2>0

  设计意图:巩固对不等式解及其解集的理解,并会在数轴上表示不等式的解集。

  四.归纳总结

  1.不等式与一元一次不等式的概念;

  2.不等式的解与不等式的解集;

  3.不等式的解集在数轴上的表示。

  五.布置作业

  1.书面作业:第134页1,2,3

  2.课外作业:第134页5———13。

  六.板书设计

  9.1.1不等式及其解集

  1.不等式、一元一次不等式的概念

  2.不等式的解、不等式的解集

  3.不等式解集的表示方法

【七年级数学说课稿】相关文章:

数学乐园说课稿07-16

数学说课稿08-01

《数学广角》说课稿07-02

小学数学说课稿01-15

初中数学说课稿02-24

小学数学优质说课稿08-10

数学说课稿15篇12-08

数学下册认识角说课稿07-23

数学说课稿(15篇)03-09

七年级生物说课稿02-08