当前位置:语文迷>教学文档>教学设计> 初中数学教学设计

初中数学教学设计

时间:2024-07-09 16:54:43 教学设计 我要投稿

初中数学教学设计

  作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写呢?以下是小编为大家收集的初中数学教学设计,仅供参考,大家一起来看看吧。

初中数学教学设计

初中数学教学设计1

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式.

  难点:反比例函数表达式的确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的`变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式

  14631000(2)y= tx

  k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  k x?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

初中数学教学设计2

  一、教材内容及设置依据

  【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

  【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

  二、教材的地位和作用

  本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

  三、对重点、难点的处理

  【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:

  1、知识巩固型

  2、实际应用型

  3、方法多变型

  4、知识拓展型等。

  【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

  四、关于教学方法的选用

  根据本节课的内容和学生的实际水平,本节课可采用的方法:

  1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

  2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

  3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

  五、关于学法的指导

  “授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的'学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

  六、课时安排:1课时

  教学程序:

  一、复习铺垫:

  首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

  1、45+(-23)

  2、9-(-5)

  3、-28-(-37)

  4、(-13)+0

  5、(-29)+(-31)

  6、(-16)-(-12)-24-(-18)

  7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

  从四排学生中个推选一名学生代表板演6、7、8、题。

  通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

  然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

  二、新知探索:

  1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作

  上升4.5千米+4.5千米

  下降3.2千米-3.2千米

  上升1.1千米+1.1千米

  下降1.4千米-1.4千米

  此时飞机比起飞点高了多少米?

  让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

  ①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

  =1.3+1.1+(-1.4)=1.3+1.1-1.4

  =2.4+(-1.4)=2.4-1.4

  =1千米=1千米

  教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。

初中数学教学设计3

  为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:

  一、教学目标:

  通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。

  二、教材分析

  本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

  第十六章 分式 本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

  第十七章 反比例函数 函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的`抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

  第十八章 勾股定理 直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

  第十九章 四边形 四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是空间与图形领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。

  第二十章 数据的分析 本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

  三、提高学科教育质量的主要措施:

  1、认真做好教学七认真工作。把教学七认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  7、指导成立课外兴趣小组的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

  8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问要照顾好、中、差三类学生,使他们都等到发展。

  9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

  10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

初中数学教学设计4

  教材分析

  1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。

  2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。

  学情分析

  1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。

  教学目标

  1.熟练掌握去括号时符号的变化规律;

  2.能正确运用去括号进行合并同类项;

  3.理解去括号的依据是乘法分配律。

  教学重点和难点

  重点

  去括号时符号的变化规律。

  难点

  括号外的因数是负数时符号的变化规律。

  教学过程

  一、创设情景问题

  青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。

  请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的.全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?

  解:这段铁路的全长为100t+120(t-0.5)(千米)

  冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。

  提出问题,如何化简上面的两个式子?引出本节课的学习内容。

  二、探索新知

  1.回顾:

  1你记得乘法分配率吗?怎么用字母来表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

  2.探究

  计算(试着把括号去掉)

  (1)13+(7-5)(2)13-(7-5)

  类比数的运算,去掉下面式子的括号

  (3)a+(b-c)(4)a-(b-c)

  3.解决问题

  100t+120(t-0.5)=100t-120(t-0.5)=

  思考:

  去掉括号前,括号内有几项、是什么符号?去括号后呢?

  去括号的依据是什么?

  三、知识点归纳

  去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  注意事项

  (1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;

  (2)括号内原有几项去掉括号后仍有几项.

  四、例题精讲

  例4化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  五、巩固练习

  课本P68练习第一题.

  六、课堂小结

  1.今天你收获了什么?

  2.你觉得去括号时,应特别注意什么?

  七、布置作业

  课本P71习题2.2第2题

初中数学教学设计5

  一、 内容简介

  本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  关键信息:

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

  二、学习者分析:

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平:

  在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

  三、 教学/学习目标及其对应的课程标准:

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

  数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

  (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

  角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

  和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

  四、 教育理念和教学方式:

  1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

  教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

  候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

  2、采用“问题情景—探究交流—得出结论—强化训练”的模式

  展开教学。

  3、教学评价方式:

  (1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

  动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

  (2) 通过判断和举例,给学生更多机会,在自然放松的.状态下,

  揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

  (3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

  教学效果。

  五、 教学媒体 :多媒体

  六、 教学和活动过程:

  教学过程设计如下:

  〈一〉、提出问题

  [引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析问题

  1、[学生回答] 分组交流、讨论

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

  (1)原式的特点。

  (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的特点)。

  (4)三项与原多项式中两个单项式的关系。

  2、[学生回答] 总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。

  3、[学生回答] 完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题

  1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判断:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、小试牛刀

  ① (x+y)2 =______________;② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

  ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[学生小结]

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1) 公式右边共有3项。

  (2) 两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、冒险岛:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

  (4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

  (7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  〈六〉、学生自我评价

  [小结] 通过本节课的学习,你有什么收获和感悟?

  本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  〈七〉[作业] P34 随堂练习 P36 习题

  七、课后反思

  本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备

初中数学教学设计6

  一、教材分析

  全期共有六章。新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算 、轴对称图形、数据的分析与比较。

  二、学情分析

  本学期是本年级学生初中学习阶段的第二学期。通过上期的学习,大多数学生对学习数学产生了浓厚的学习兴趣。更有像陈琦、严细毛、瞿俐纯等同学更是对数学探究活动情有独衷。上期期末考试中,0901整体水平稍高于兄弟班级,但有两极分化的趋势。0902班的及格率稍高于兄弟班,但低分段学生高于10%,而且这部分学生对学习缺乏应有的热情和自信,有自暴自弃之嫌。

  三、目标任务

  本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的.运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期中、期末考试中力争生均分70分左右,合格率60%以上,优秀率30%以上,并将低分率控制到10%以下。

  四. 主要教学措施

  1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。

  2、把握学生思想动态,及时与学生沟通,搞好师生关系。

  3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。

  4、改进教学方法,用多媒体课件,实物等创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。

  5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。

  6、 开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。

初中数学教学设计7

  一、案例实施背景

  本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

  二、案例主题分析与设计

  本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

  时通过小组内学生相互协作研究,培养学生合作性学习精神。

  三、案例教学目标

  1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

  2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

  四、案例教学重、难点

  1、重点:正确运用科学记数法表示较大的数

  2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数

  五、案例教学用具

  1、教具:多媒体平台及多媒体课件、图片

  六、案例教学过程

  一、创设情境,兴趣导学:

  1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

  2、展示课本第63页图片,现实中,我们会遇到一些比较

  大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

  师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

  (1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

  生1:答:13.7亿,640万,3亿。

  师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。

  分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

  二、尝试探索,讲授新课:

  1、探索10n的特征

  计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

  (观察并思考,小组讨论)

  (1)结果中“0”的个数与10的指数有什么关系?

  (2)结果的位数与10的指数有什么关系?

  2、练习:将下列个数写成只有一位整数乘以10n的形式。

  (1)500(2)3000(4)40000

  师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。 分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。

  4、科学记数法:

  像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的`数,n是整数),这种记数方法叫做科学记数法。

  (思考,小组讨论)

  10的指数与结果的位数有什么关系?

  分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

  三、巩固新知,知识运用:

  1、将下列各数写成科学记数法形式。

  (1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米? 分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

  (观察并思考,小组讨论)

  5、如何将一个用科学记数法表示的数写成原数?

  a×10n将a的小数点向右移动n位原数

  分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

  练习:人体内约有2.5×10 5个细胞,其原数为多少个?

  七、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好

  地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

初中数学教学设计8

生活中的平移

  ●教学目标

  (一)教学知识点

  1.平移的定义

  2.平移的基本性质

  (二)能力训练要求

  1.通过具体实例认识平移,理解平移的基本内涵.

  2.探索平移的基本性质,理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.

  (三)情感与价值观要求

  经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移的基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

  ●教学重点

  平移的基本性质.

  ●教学难点

  平移的基本内涵的理解.

  ●教学方法

  探索、发现法.

  ●教具准备

  图片:一些游乐园的图片、辘轳、电梯等.

  电脑演示:平移的过程,粒子运动及行星运转等.

  投影片四张:

  第一张:想一想,议一议(记作投影片§3.1A);

  第二张:想一想(记作投影片§3.1B);

  第三张:平移的性质(记作投影片§3.1C);

  第四张:例1(记作投影片§3.1D).

  ●教学过程

  Ⅰ.巧设情景问题,引入课题

  [师]同学们,还记得游乐园内的一些项目吗?(或投影片放图片,或在电脑上演示幻灯片):旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?

  [生齐]也走了200米.

  [师]很好.其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的老牛上的辘轳(出示图片);还是刚刚耸立起的高楼大厦里的电梯,(出示图片),无论是微观世界里的粒子运动(电脑演示),还是浩翰宇宙中的行星运转(电脑演示).其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!

  从今天开始,我们就来探索第三章:图形的平移和旋转.

  Ⅱ.讲授新课

  [师]下面我们来看第一节:生活中的平移(电脑演示:P57的图3—1,然后提出问题)

  (1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的.人呢?

  [生齐]传送带上的电视机的形状、大小在运动前后没有发生改变.

  手扶电梯上的人也没有变化.

  [师]很好,我们再看(电脑演示):

  在传送带上,如果电视机的某一按键向前移动了80cm,那么电视机的其他部位向什么方向移动?移动了多少距离?

  [生]电视机的其他部位也向前移动,也移动了80cm.

  [师]好,(电脑出示问题,并演示四边形ABCD移动到四边形EFGH的位置的过程)

  如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?

  [生]四边形ABCD与四边形EFGH的形状、大小相同.

  [师]很好,那同学们来想一想,议一议(出示投影片§3.1A).

  传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?

初中数学教学设计9

  我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。

  数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:

  1、注重了数学与生活之间的联系。

  《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的兴趣。

  2、概念的得出注重了探究过程、分析过程,体现了活动主题。

  通过一组实例,分析共性,找共同特征。

  3、铺垫导入恰当,让预设与生成合情合理。

  课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。

  4、注重了数学陷阱的设置。

  把学生对概念理解中的易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。

  5、注重了学科间的渗透。

  在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的.,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。

初中数学教学设计10

  教学目标

  1、知识与技能:

  (1)理解一元一次不等式组及其解集的意义;

  (2)掌握一元一次不等式组的解法。

  2、过程与方法:

  (1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。

  (2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。

  3、情感、态度与价值观:

  (1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。

  (2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。

  2学情分析

  本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。

  另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。

  3重点难点

  1、教学重点:对一元一次不等式组解集的认识及其解法。

  2、教学难点:对一元一次不等式组解集的认识及确定。

  3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。

  4教学过程4.1第一学时教学活动活动1【导入】温故知新

  教师提问:

  1、什么是一元一次不等式?

  2、什么是一元一次不等式的解集?

  3、如何求一元一次不等式的解集?

  针对性练习:

  (设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)

  活动2【讲授】创设问题情景,探索新知

  1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水

  超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?

  (设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)

  2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:

  超过1 200 t和不足1 500 t。

  3、问题1:如何用数学式子表示这两个不等关系?

  1)引导学生一起把这个实际问题转换为数学模型:

  满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。

  设用x min将污水抽完,则x需同时满足以下两个不等式:

  30x>1200, ①

  30x<1500 ②

  2)教师归纳一元一次不等式组的意义:

  由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。

  (设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的'有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)

  4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?

  1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,

  运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。

  2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:

   由不等式①,解得x>40

  由不等式②,解得x<50

  3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。

  (设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)

  5、问题3:如何求得这两个解集的公共部分?

  学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。

  (设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)

  教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。

  (设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)

  形式一:用两种不同颜色表示这两个解集

  1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。

  (1)这两种颜色把数轴分成几个部分?

  (2)每一个部分分别表示哪些数?

  (3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?

  2)学生通过自主探究、合作交流,得到这3个问题的正确答案。

  3)得出结论:

  只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。

  4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。

  (设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)

  形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。

  类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。

  形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。

  (设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)

  6、问题4:如何表示这个可取值范围?

  教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为4040且x<50。

  7、小结并解决课本问题:原不等式组中x的取值范围为40

  (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。)

  8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳:

  在数轴上,若在40

  一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

  9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤:

  (1)分别求出不等式组中各个不等式的解集;

  (2)把这些解集分别在同一条数轴上表示出来;

  (3)确定各个不等式解集的公共部分;

  (4)写出不等式组的解集。

  (设计意图:及时进行小结,使学生对所学知识更加的系统化。)

初中数学教学设计11

  课题:12.3等腰三角形(第一课时)

  教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时

  任课教师:东湾中学李晓伟

  设计理念:

  教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。

  ㈠教材的地位和作用分析

  等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

  另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。

  ㈡教学内容的分析

  本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。

  在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

  二、目标及其解析

  ㈠教学目标:

  知识技能:

  1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;

  3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。

  数学思考:

  1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;

  2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.

  解决问题:

  1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;

  2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.

  情感态度:

  1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;

  2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;

  3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.

  ㈡教学重点:

  等腰三角形的性质及应用。

  ㈢教学难点:

  等腰三角形性质的证明。

  ㈣解析

  本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;

  2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;

  3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。

  三、问题诊断分析

  1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。

  2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的`对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。

  3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计

  课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。

  四、教法、学法:

  教法:

  常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。

  本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。

  学法:

  学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。

  五、教学支持条件分析

  在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。

  六、教学基本流程

  七、教学过程设计

初中数学教学设计12

  关注课堂教学设计,注重课堂的开放性、生成性和创新性的教学设计是营造一个宽松和谐的学习环境必要手段。教师必须把课的主动权放给学生,自己和学生在课堂上都要“活”起来,让学生敢想、敢问、敢做。教师要为学生提供充分发展个性的机会,充分尊重、理解、信任他们,这样才能激发他们的上进心,主动参与数学学习活动。

  教师要优化问题情境,让学生亲近数学,在数学教学中要不失时机地创造问题情境,诱发学生的学习积极性,促进学生思维的可持续发展,为学生学习数学做好充分的心理准备。

  一、问题设计要有生活性

  数学来源于生活,教师问题的设置要让学生感觉到数学就在他们的周围。如学习“菱形的性质”一节时,教师带了一个可伸缩的衣帽架展现给同学们,将它伸缩成各种形状的菱形,并说固定在墙上既美观又实用,为学生提供了和谐的气氛。这样就强化了学生的感性认识,从而达到了学生对数学的理解。

  二、问题设计要有挑战性

  课堂提问是课堂教学中教师、学生、教材相互交流、相互撞击的重要双边教学形式,是教师有较高智能和较高教学水平的具体体现。对课堂提问的原则、功能、技巧的认识程度决定于教师课堂教学能动性的差异,直接影响着课堂教学效果和学生思维的成败。因此,教师在教学中要根据教学内容、学生的年龄特征,创设新奇的、具有神秘色彩的问题情境。

  三、问题设计要有发现性

  问题情境要不断激发学生的学习动机,使学生处于“奋发”的状态中,给学生提供思维的空间,让他们学会自主学习,变“学会”为“会学”。如几何题“三线合一定理”,它叙述了高线、中线、角平分线在等腰三角形内三者之间的关系规律,这一节课开始可在复习高线、中线、角平分线概念的基础上提出一系列问题:

  (1)三角形一边上的高线(中线、角平分线)有什么性质?

  (2)等腰三角形一边上的高线(中线、角平分线)有什么性质?

  (3)在同一个三角形中作一边高线、中线、角平分线(这边所对的.顶角)是怎样的?由此层层展开论证,开辟了知识的新领域,激发了学生求知的新兴趣。

  四、问题设计要有针对性

  一个好的问题情境有助于问题的解决,有助于唤起学生对教学目标的情感,增强目标意识。无病呻吟的设计非但不能使学生领悟要领,相反更容易使他们误入歧途。因此,问题情境的设置要触及问题的本质,要针对教材、针对学生。

  五、问题设计要有实效性

  教师不管学生回答的问题质量如何,都应该给予肯定,使学生经历一次获得结论的过程,培养他们的逻辑思维能力。有些教师在讲述专题内容时,基本直接告诉学生已有的结论或解决问题的程序,而不是启发引导学生参与知识的发生、经历探索活动的过程,因此在许多课堂教学中问题教学的偏差仍普遍存在,使得数学问题教学的误区在不同程度上影响着学生的潜能的开发,缺乏问题情境的实效性。

  复习提问中教师要善于设疑,问题的形式要新颖、富有情趣,为学生所喜闻乐“答”。

  从提问的内容角度看,课堂教学提问要做到四忌:

  (1)重点处发问点拨,切忌不痛不痒;

  (2)要间接问有关知识,切忌离题太远;

  (3)巩固性知识提问,要归类记忆,切忌肤浅零杂;

  (4)难点反复设疑,要深入浅出,切忌散乱无序。

  总之,提问的技巧按课堂题材的不同应丰富多样、精心设计,使学生在课堂提问中迸发出创造的火花。好的课堂教学应该有宽松和谐的学习气氛,使学生在学习过程中产生丰富的情感体验,对学习数学产生兴趣,也会有积极主动的参与热情。教师生动的语言、和蔼的态度、富有启发性和创造性的问题、有探索性的活动等都可以为学生创造和谐的环境。课堂提问不应是孤立地单项使用,而应有机结合地使用各种技巧提问,才能发挥课堂提问的作用。提问的过程不仅是诱导学生参与,它必须使学生给出其回答的理由,要对学生进行思维训练,让学生学会思考问题、解决问题,从而真正学会学习。

初中数学教学设计13

  课型:新授课

  学习目标:

  1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.

  2.学会运用数学知识分析解决实际问题,体会数学的价值。

  重点:列一元二次方程解应用题

  难点:学会分析问题中的等量关系

  一、知识回顾

  列方程解应用题的一般步骤是①②③④⑤⑥

  二、自学教材、合作探究

  1、自学教材45页,学习分析“探究一”中的数量关系

  设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:

  2、解这个方程,得

  3、想一想:三轮传染后有多少人患流感?四轮呢?

  三、检查自学效果

  1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )

  A.8人B.9人C.10人D.11人

  2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )

  A. B. C. D.

  四、指导学生应用

  某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)

  解:设每轮感染中平均每一台电脑会感染台电脑,1分

  4分

  解之得6分

  8分

  答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。

  五、巩固训练:

  1.一个多边形的对角线有9条,则这个多边形的`边数是( ).

  A.6 B.7 C.8 D.9

  2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人

  A.11 B.12 C.13 D.14

  3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )

  A.x(x+1)=240 B.x(x-1)=240

  C.2x(x+1)=240 D.x(x+1)=240

  4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。

  5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。

  6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

  反思:2题和4题列方程时为何不一样呢?

  六、归纳小结:

  1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。

  2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。

  七、效果测评:

  1.解下列方程。(1)+10x+21=0(2)-x=1

  2.两个相邻的偶数的积是240,求这两个偶数。

  3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?

初中数学教学设计14

  一、案例实施背景

  教材为人教版义务教育课程标准实验教科书七年级数学(下册)。

  二、案例主题分析与设计

  本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

  《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

  三、案例教学目标

  1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

  四、案例教学重、难点

  1.重点:对平行线性质的掌握与应用。

  2.难点:对平行线性质1的探究。

  五、案例教学用具

  1.教具:多媒体平台及多媒体课件.

  2.学具:三角尺、量角器、剪刀。

  六、案例教学过程

  1.创设情境,设疑激思

  ⑴播放一组幻灯片。

  内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。

  ⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  ⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。

  ⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的`性质(板书)。

  2.数形结合,探究性质

  ⑴画图探究,归纳猜想。

  教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

  教师提出研究性问题一:

  指出图中的同位角,并度量这些角,填写结果:

  第一组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第二组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第三组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第四组:同位角( )( ) 角的度数( )( ) 数量关系( )

  教师提出研究性问题二:

  将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

  教师提出研究性问题三:

  再画出一条截线d,看你的猜想结论是否仍然成立?

  学生活动:探究、按小组讨论,最后得出结论:仍然成立。

  ⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想

  ⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  3.引申思考,培养创新

  教师提出研究性问题四:

  请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。

  教师活动:评价学生的研究成果,并引导学生说理

  因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)

  又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)

  所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)

  教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

  平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

  4.实际应用,优势互补

  ⑴(抢答)课本P21 练一练

  1、2及习题5.3

  1、3.

  ⑵(讨论解答)课本P22 习题5.

  32、

  4、5.

  5.课堂总结:

  这节课你有哪些收获?

  ⑴学生总结:平行线的性质

  1、

  2、3.⑵教师补充总结:

  ①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。

  ②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质

  1、

  2、3的表述)。

  ④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

  6 .作业。学习与评价: P 2 3 6 ( 选择);P24

  7、12(拓展与延伸)。

  七、教学反思

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:

  1.教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。

  2.学的转变

  学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。

  3.课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

  总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!

初中数学教学设计15

  新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。

  一、联系学生的生活实际,创设问题情境

  生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。

  例如在教学菱形性质时,导入时是这样设计的:

  1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:

  (1)吃过的菱形形状的食物

  (2)春节时门上贴的剪纸花

  (3)居室装饰地板砖

  (4)中国结

  (5)菱形衣帽架等。

  2、为什么把这些图案设计成菱形呢?

  3、菱形到底有哪些特殊的性质和运用呢?(板书课题) 通过本节课的学习之后大家可以总结出来。

  然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,

  然后让学生思考日常生活中还有哪些菱形性质方面的应用。

  这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。

  二、变更表述形式,创设问题情境

  在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。 例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形

  BC A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的.办法,在实践中培养学生的创造能力。

  三、猜想验证法,创设问题情境

  在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。

  例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。

  总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。

【初中数学教学设计】相关文章:

初中数学优秀教学设计04-09

初中数学教学设计与反思07-24

人教版初中数学教学设计08-02

数学教学设计07-26

数学广角教学设计12-18

数学教学设计模板08-02

初中地理教学设计02-02

初中物理教学设计07-23

政治初中教学设计11-25